
hello ggplot2!

Dr. Jennifer (Jenny) Bryan
Department of Statistics and Michael Smith Laboratories
University of British Columbia

jenny@stat.ubc.ca
@JennyBryan
https://github.com/jennybc
http://www.stat.ubc.ca/~jenny/

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
mailto:jenny@stat.ubc.ca
mailto:jenny@stat.ubc.ca
https://twitter.com
https://twitter.com
https://github.com/jennybc
https://github.com/jennybc
http://www.stat.ubc.ca/~jenny/
http://www.stat.ubc.ca/~jenny/

thanks to ...

organizers of this Workshop on Big Data in Environmental Science

supporters
Canadian Statistical Sciences Institute (CANSSI)
Pacific Institute for the Mathematical Sciences (PIMS)
UBC Department of Statistics
STATMOS
SFU
SFU Department of Statistics and Actuarial Science

Casey Shannon, Nick Fishbane -- helpers @ the first offering of this
tutorial

http://www.pims.math.ca/scientific-event/150511-bdes
http://www.pims.math.ca/scientific-event/150511-bdes

please see this GitHub repository for all references,
examples worked with live coding, these slides, etc.

https://github.com/jennybc/ggplot2-tutorial

these slides just remind me to discuss some Big Ideas
by putting them in a Big Font

https://github.com/jennybc/ggplot2-tutorial
https://github.com/jennybc/ggplot2-tutorial

See more of my figure making wisdom here:
http://stat545-ubc.github.io/graph00_index.html

http://stat545-ubc.github.io/graph00_index.html
http://stat545-ubc.github.io/graph00_index.html

stackoverflow is your friend

use tags!

http://stackoverflow.com
http://stackoverflow.com

stackoverflow is your friend

use tags!

http://stackoverflow.com
http://stackoverflow.com

“A picture is worth
a thousand words”

http://msnbcmedia1.msn.com/j/msnbc/Components/Photos/050709/050609_columbia_hmed_6p.hmedium.jpg

1986 Challenger space shuttle disaster
Favorite example of Edward Tufte

http://msnbcmedia1.msn.com/j/msnbc/Components/Photos/050709/050609_columbia_hmed_6p.hmedium.jpg
http://msnbcmedia1.msn.com/j/msnbc/Components/Photos/050709/050609_columbia_hmed_6p.hmedium.jpg
http://www.edwardtufte.com
http://www.edwardtufte.com

“A picture is worth a thousand words”

“A picture is worth a thousand words”

Siddhartha R. Dalal; Edward B. Fowlkes; Bruce Hoadley. Risk Analysis of the Space
Shuttle: Pre-Challenger Prediction of Failure. JASA, Vol. 84, No. 408 (Dec., 1989),
pp. 945-957. Access via JSTOR.

http://www.jstor.org/stable/2290069
http://www.jstor.org/stable/2290069

Edward Tufte
http://www.edwardtufte.com

BOOK:
Visual Explanations: Images and Quantities, Evidence and
Narrative

Ch. 5 deals with the Challenger disaster
That chapter is available for $7 as a downloadable booklet:
http://www.edwardtufte.com/tufte/books_textb

http://www.edwardtufte.com
http://www.edwardtufte.com
http://www.edwardtufte.com/tufte/books_visex
http://www.edwardtufte.com/tufte/books_visex
http://www.edwardtufte.com/tufte/books_visex
http://www.edwardtufte.com/tufte/books_visex
http://www.edwardtufte.com/tufte/books_textb
http://www.edwardtufte.com/tufte/books_textb

“A picture is worth a thousand words”

Always, always, always plot the data.

Replace (or complement) ‘typical’ tables of
data or statistical results with figures that
are more compelling and accessible.

Whenever possible, generate figures that
overlay / juxtapose observed data and
analytical results, e.g. the ‘fit’.

base or traditional graphics

 vs

lattice package
ships with R, but must load
library(lattice)

 vs

ggplot2 package
must be installed and loaded
install.packages(“ggplot2”, dependencies = TRUE)
library(ggplot2)

Two main goals for statistical graphics
• To facilitate comparisons.

• To identify trends.

lattice and ggplot2 achieve these
goals with less fuss

Assignment 1: Best Set of Graphs

2000 6000 10000 14000

40
55

70

Year of 1950

Income per PersonLi
fe

 E
xp

ec
ta

nc
y

at
 B

irt
h

(y
rs

)

0 5000 10000 15000

50
65

Year of 1955

Income per PersonLi
fe

 E
xp

ec
ta

nc
y

at
 B

irt
h

(y
rs

)

0 5000 10000 15000

30
50

70

Year of 1960

Income per PersonLi
fe

 E
xp

ec
ta

nc
y

at
 B

irt
h

(y
rs

)

0 5000 10000 15000 20000

55
65

Year of 1965

Income per PersonLi
fe

 E
xp

ec
ta

nc
y

at
 B

irt
h

(y
rs

)

0 5000 10000 20000

64
70

Year of 1970

Income per PersonLi
fe

 E
xp

ec
ta

nc
y

at
 B

irt
h

(y
rs

)

0 5000 10000 20000

64
70

Year of 1975

Income per PersonLi
fe

 E
xp

ec
ta

nc
y

at
 B

irt
h

(y
rs

)

0 5000 15000 25000

66
72

Year of 1980

Income per PersonLi
fe

 E
xp

ec
ta

nc
y

at
 B

irt
h

(y
rs

)

10000 15000 20000 25000 30000

70
76

Year of 1985

Income per PersonLi
fe

 E
xp

ec
ta

nc
y

at
 B

irt
h

(y
rs

)

lattice

base

Income per person (GDP/capita, inflation−adjusted $)

Li
fe

 e
xp

ec
ta

nc
y

at
 b

irt
h

(y
ea

rs
)

30
40
50
60
70
80

10^2.5 10^3.5 10^4.5

●
●

●

●

●
●

●

●
●
●

●

● ●
●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

1962

Af
ric

a

●
●

●

●
●

● ●

● ●

●
●

●

●
●
●

●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

1977

Af
ric

a

10^2.5 10^3.5 10^4.5

●

●

●●

●
●●

●●
●

●

●

●

●
●●

●

● ●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

1992

Af
ric

a

●

●

●
● ●

●
●●

● ●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2007

Af
ric

a

●
●●

●
●

●

●

●
●

●

●

●

● ●

●
●

●
●

●

●
●

●

●
●

●

1962

Am
er

ic
as ●●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●
● ●

1977

Am
er

ic
as ●●● ●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●
●

●●●
●

1992

Am
er

ic
as

30
40
50
60
70
80

●●● ●
●

● ●
●

●
●

●

●

●
●

●
●●●

● ●
●●

●
●

2007

Am
er

ic
as

30
40
50
60
70
80

●

●

●
●●

●●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●● ●

●

●

●

1962

As
ia

●

●

●
●●

●●
●

●●

●
●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

1977

As
ia ●

●

●●
● ● ●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

1992

As
ia ●●

●
●● ●●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●
●

●

●

●
●

2007

As
ia

●●●●●●

●

●

●
●

●●

●

●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

1962
Eu

ro
pe

10^2.5 10^3.5 10^4.5

●●●●

●

●
●●

●
●●

●
●

●
● ●

●
●

●●

●
●

●●

●

●

●
●

●

●

1977

Eu
ro

pe

●
●

●●●●
●●

●

●

●
●

●●
●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

1992

Eu
ro

pe

10^2.5 10^3.5 10^4.5

30
40
50
60
70
80●

●
●●●●●●

●●● ●
●

● ●

●●
●

●

●

●

● ●

● ●
●

●
●

●

●

2007

Eu
ro

pe “multi-panel conditioning”
lifeExp ~ gdpPercap | continent * year

ggplot2

“facetting”
ggplot(...) + ... +
 facet_wrap(~ continent)

Income per person (GDP/capita, inflation−adjusted $)

Li
fe

 e
xp

ec
ta

nc
y

at
 b

irt
h

(y
ea

rs
)

30

40

50

60

70

80

1000 10000

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1962

●

●

●

●

●

●●●

●
●● ●
●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1977

●

●
●

● ● ●●●

●●●

●

●

●

●

● ●

●
●●
●

●

●
●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

1992

1000 10000

30

40

50

60

70

80
●

●●
●

●

●

●●●

●

●●●●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

● ●● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2007

Africa
Americas
Asia
Europe
Oceania

●

●

●

●

●

lattice
“groups and superposition”
lifeExp ~ gdpPercap | year, group = country

ggplot2 “aesthetic mapping”
ggplot(...) + ... +
 aes(fill = country)

ggplot2 adding a fitted curve
ggplot(...) + ... +
 geom_smooth(...)

time invested

quality of
output

* figure is totally fabricated but, I claim, still true

base

ggplot2 / lattice

week one

time invested

quality of
output

* figure is totally fabricated but, I claim, still true

base

after you’ve climbed the steepest part of the
learning curve ...

ggplot2 / lattice

I make 99 figures for my eyeballs only for every
one that I inflict on other people.

Main reason to use ggplot2 is to get great
“value for moneytime” for those 99 figures.

You can also make hyper-controlled figs for
publication, but that is fiddly and time-
consuming in any system. You may even go back
to base graphics sometimes. Embrace diversity!

secrets of the Figure Whisperer

In my experience,
the vast majority of
graphing agony
is due to
insufficient data wrangling.

it should feel more like this

use data.frames

use factors

be the boss of your factors

keep your data tidy

reshape your data

if you are struggling with a plot,

ask yourself:

how many of these “rules” am I breaking?

often that is the real, hidden reason for struggle

use data.frames

use factors

be the boss of your factors

keep your data tidy

reshape your data

read.table(file, header = FALSE, sep = "", quote = "\"'",
 dec = ".", row.names, col.names,
 as.is = !stringsAsFactors,
 na.strings = "NA", colClasses = NA, nrows = -1,
 skip = 0, check.names = TRUE, fill = !blank.lines.skip,
 strip.white = FALSE, blank.lines.skip = TRUE,
 comment.char = "#",
 allowEscapes = FALSE, flush = FALSE,
 stringsAsFactors = default.stringsAsFactors(),
 fileEncoding = "", encoding = "unknown", text, skipNul = FALSE)

master read.table()

dplyr is fantastic new-ish package for working with
data.frames (and more)

offers tbl_df as a flavor of data.frame with
stringsAsFactors defaulting to FALSE and a
nicer print method

readr is fantastic new package for data ingest

consider read_delim(), read_csv(),
read_tsv(), read_csv2() as alternatives to
read.table() and friends

http://cran.r-project.org/web/packages/dplyr/index.html
http://cran.r-project.org/web/packages/dplyr/index.html
http://cran.r-project.org/web/packages/readr/index.html
http://cran.r-project.org/web/packages/readr/index.html

bottom line:
take control of your data at time of import

skillful use of the read_this() functions can
eliminate a great deal of fannying around later

master reorder()

reorder() helps
you order factor
levels based on
statistics
computed from
data as opposed
to the A, B, C’s

figures are much
more valuable
this way!

4 Tidy Data

dropped. In this experiment, the missing value represents an observation that should have
been made, but wasn’t, so it’s important to keep it. Structural missing values, which represent
measurements that can’t be made (e.g. the count of pregnant males) can be safely removed.

name trt result

John Smith a —
Jane Doe a 16
Mary Johnson a 3
John Smith b 2
Jane Doe b 11
Mary Johnson b 1

Table 3: The same data as in Table 1 but with variables in columns and observations in rows.

For a given dataset, it’s usually easy to figure out what are observations and what are variables,
but it is surprisingly di�cult to precisely define variables and observations in general. For
example, if the columns in the Table 1 were height and weight we would have been happy
to call them variables. If the columns were height and width, it would be less clear cut, as
we might think of height and width as values of a dimension variable. If the columns were
home phone and work phone, we could treat these as two variables, but in a fraud detection
environment we might want variables phone number and number type because the use of one
phone number for multiple people might suggest fraud. A general rule of thumb is that it is
easier to describe functional relationships between variables (e.g., z is a linear combination
of x and y, density is the ratio of weight to volume) than between rows, and it is easier
to make comparisons between groups of observations (e.g., average of group a vs. average of
group b) than between groups of columns.

In a given analysis, there may be multiple levels of observation. For example, in a trial of new
allergy medication we might have three observational types: demographic data collected from
each person (age, sex, race), medical data collected from each person on each day (number
of sneezes, redness of eyes), and meterological data collected on each day (temperature,
pollen count).

2.3. Tidy data

Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is
messy or tidy depending on how rows, columns and tables are matched up with observations,
variables and types. In tidy data:

1. Each variable forms a column.

2. Each observation forms a row.

3. Each type of observational unit forms a table.

This is Codd’s 3rd normal form (Codd 1990), but with the constraints framed in statistical
language, and the focus put on a single dataset rather than the many connected datasets
common in relational databases. Messy data is any other other arrangement of the data.

4 Tidy Data

dropped. In this experiment, the missing value represents an observation that should have
been made, but wasn’t, so it’s important to keep it. Structural missing values, which represent
measurements that can’t be made (e.g. the count of pregnant males) can be safely removed.

name trt result

John Smith a —
Jane Doe a 16
Mary Johnson a 3
John Smith b 2
Jane Doe b 11
Mary Johnson b 1

Table 3: The same data as in Table 1 but with variables in columns and observations in rows.

For a given dataset, it’s usually easy to figure out what are observations and what are variables,
but it is surprisingly di�cult to precisely define variables and observations in general. For
example, if the columns in the Table 1 were height and weight we would have been happy
to call them variables. If the columns were height and width, it would be less clear cut, as
we might think of height and width as values of a dimension variable. If the columns were
home phone and work phone, we could treat these as two variables, but in a fraud detection
environment we might want variables phone number and number type because the use of one
phone number for multiple people might suggest fraud. A general rule of thumb is that it is
easier to describe functional relationships between variables (e.g., z is a linear combination
of x and y, density is the ratio of weight to volume) than between rows, and it is easier
to make comparisons between groups of observations (e.g., average of group a vs. average of
group b) than between groups of columns.

In a given analysis, there may be multiple levels of observation. For example, in a trial of new
allergy medication we might have three observational types: demographic data collected from
each person (age, sex, race), medical data collected from each person on each day (number
of sneezes, redness of eyes), and meterological data collected on each day (temperature,
pollen count).

2.3. Tidy data

Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is
messy or tidy depending on how rows, columns and tables are matched up with observations,
variables and types. In tidy data:

1. Each variable forms a column.

2. Each observation forms a row.

3. Each type of observational unit forms a table.

This is Codd’s 3rd normal form (Codd 1990), but with the constraints framed in statistical
language, and the focus put on a single dataset rather than the many connected datasets
common in relational databases. Messy data is any other other arrangement of the data.

from Wickham’s Tidy Data

Journal of Statistical Software 3

2.1. Data structure

Most statistical datasets are rectangular tables made up of rows and columns. The columns
are almost always labelled and the rows are sometimes labelled. Table 1 provides some data
about an imaginary experiment in a format commonly seen in the wild. The table has two
columns and three rows, and both rows and columns are labelled.

treatmenta treatmentb

John Smith — 2
Jane Doe 16 11
Mary Johnson 3 1

Table 1: Typical presentation dataset.

There are many ways to structure the same underlying data. Table 2 shows the same data
as Table 1, but the rows and columns have been transposed. The data is the same, but the
layout is di↵erent. Our vocabulary of rows and columns is simply not rich enough to describe
why the two tables represent the same data. In addition to appearance, we need a way to
describe the underlying semantics, or meaning, of the values displayed in table.

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

Table 2: The same data as in Table 1 but structured di↵erently.

2.2. Data semantics

A dataset is a collection of values, usually either numbers (if quantitative) or strings (if
qualitative). Values are organised in two ways. Every value belongs to a variable and an
observation. A variable contains all values that measure the same underlying attribute (like
height, temperature, duration) across units. An observation contains all values measured on
the same unit (like a person, or a day, or a race) across attributes.

Table 3 reorganises Table 1 to make the values, variables and obserations more clear. The
dataset contains 18 values representing three variables and six observations. The variables
are:

1. person, with three possible values (John, Mary, and Jane),

2. treatment, with two possible values (a and b), and

3. result, with five or six values depending on how you think of the missing value (-, 16,
3, 2, 11, 1).

The experimental design tells us more about the structure of the observations. In this exper-
iment, every combination of of person and treatment was measured, a completely crossed
design. The experimental design also determines whether or not missing values can be safely

Journal of Statistical Software 3

2.1. Data structure

Most statistical datasets are rectangular tables made up of rows and columns. The columns
are almost always labelled and the rows are sometimes labelled. Table 1 provides some data
about an imaginary experiment in a format commonly seen in the wild. The table has two
columns and three rows, and both rows and columns are labelled.

treatmenta treatmentb

John Smith — 2
Jane Doe 16 11
Mary Johnson 3 1

Table 1: Typical presentation dataset.

There are many ways to structure the same underlying data. Table 2 shows the same data
as Table 1, but the rows and columns have been transposed. The data is the same, but the
layout is di↵erent. Our vocabulary of rows and columns is simply not rich enough to describe
why the two tables represent the same data. In addition to appearance, we need a way to
describe the underlying semantics, or meaning, of the values displayed in table.

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

Table 2: The same data as in Table 1 but structured di↵erently.

2.2. Data semantics

A dataset is a collection of values, usually either numbers (if quantitative) or strings (if
qualitative). Values are organised in two ways. Every value belongs to a variable and an
observation. A variable contains all values that measure the same underlying attribute (like
height, temperature, duration) across units. An observation contains all values measured on
the same unit (like a person, or a day, or a race) across attributes.

Table 3 reorganises Table 1 to make the values, variables and obserations more clear. The
dataset contains 18 values representing three variables and six observations. The variables
are:

1. person, with three possible values (John, Mary, and Jane),

2. treatment, with two possible values (a and b), and

3. result, with five or six values depending on how you think of the missing value (-, 16,
3, 2, 11, 1).

The experimental design tells us more about the structure of the observations. In this exper-
iment, every combination of of person and treatment was measured, a completely crossed
design. The experimental design also determines whether or not missing values can be safely

4 Tidy Data

dropped. In this experiment, the missing value represents an observation that should have
been made, but wasn’t, so it’s important to keep it. Structural missing values, which represent
measurements that can’t be made (e.g. the count of pregnant males) can be safely removed.

name trt result

John Smith a —
Jane Doe a 16
Mary Johnson a 3
John Smith b 2
Jane Doe b 11
Mary Johnson b 1

Table 3: The same data as in Table 1 but with variables in columns and observations in rows.

For a given dataset, it’s usually easy to figure out what are observations and what are variables,
but it is surprisingly di�cult to precisely define variables and observations in general. For
example, if the columns in the Table 1 were height and weight we would have been happy
to call them variables. If the columns were height and width, it would be less clear cut, as
we might think of height and width as values of a dimension variable. If the columns were
home phone and work phone, we could treat these as two variables, but in a fraud detection
environment we might want variables phone number and number type because the use of one
phone number for multiple people might suggest fraud. A general rule of thumb is that it is
easier to describe functional relationships between variables (e.g., z is a linear combination
of x and y, density is the ratio of weight to volume) than between rows, and it is easier
to make comparisons between groups of observations (e.g., average of group a vs. average of
group b) than between groups of columns.

In a given analysis, there may be multiple levels of observation. For example, in a trial of new
allergy medication we might have three observational types: demographic data collected from
each person (age, sex, race), medical data collected from each person on each day (number
of sneezes, redness of eyes), and meterological data collected on each day (temperature,
pollen count).

2.3. Tidy data

Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is
messy or tidy depending on how rows, columns and tables are matched up with observations,
variables and types. In tidy data:

1. Each variable forms a column.

2. Each observation forms a row.

3. Each type of observational unit forms a table.

This is Codd’s 3rd normal form (Codd 1990), but with the constraints framed in statistical
language, and the focus put on a single dataset rather than the many connected datasets
common in relational databases. Messy data is any other other arrangement of the data.

messy tidy

from White et al’s Nine simple ways ...

iee 6(2) (2013) 5

Figure 1. Examples of how to restructure two common issues with tabular data. (a) Each cell should only contain a
single value. If more than one value is present then the data should be split into multiple columns. (b) There should
be only one column for each type of information. If there are multiple columns then the column header should be
stored in one column and the values from each column should be stored in a single column.

spaces. There are two potential issues with blanks that
should be considered:

1. It can be difficult to know if a value is missing or
was overlooked during data entry.

2. Blanks can be confusing when spaces or tabs are
used as delimiters in text files.

"NA" and "NULL" are reasonable null values, but they
are only handled automatically by a subset of commonly
used software (Table 1). "NA" can also be problematic
if it is also used as an abbreviation (e.g., North America,
Namibia, Neotoma albigula, sodium, etc.). We recom-
mend against using numerical values to indicate nulls
(e.g., 999, -999, etc.) because they typically require an
extra step to remove from analyses and can be accident-
ally included in calculations. We also recommend
against using non-standard text indications (e.g., No
data, ND, missing, ---) because they can cause issues
with software that requires consistent data types within
columns). Whichever null value you use, only use one,
use it consistently throughout the data set, and indicate
it clearly in the metadata.

6. Make it easy to combine your data with other
datasets

 Ecological and evolutionary data are often combined
with other kinds of data. You can make it easier to com-
bine your data with other data sources by including con-
textual data that appears across similar data sources.
Two of the most common kinds of contextual data in
ecology and evolution are taxonomy and geographic
location. While this type of data is known and recorded
in most studies (e.g, in field notebooks, on maps) it is
frequently not included with the data. In general, if you
have collected additional data or notes about a study
organism or field site, there is a good chance that it will
be useful to someone else, so including it with your data
when you share it is a good idea. This kind of informat-
ion can be included either as part of the data itself (e.g.,
in a new column or an additional table) or can be includ-
ed in the metadata (e.g., the geographic location of the
study site). For geographic data it is also important to
include the datum (e.g., WGS-84) and sufficient précis-
ion (e.g., 4 decimals places if using decimal degrees) to
allow the data to be combined with other geographic
datasets.

reshape your data

data has a tendency to get shorter and wider, but
tall and thin often better for analysis + visualization

Journal of Statistical Software 7

row a b c

a 1 4 7
b 2 5 8
c 3 6 9

(a) Raw data

row column value

a a 1
b a 2
c a 3
a b 4
b b 5
c b 6
a c 7
b c 8
c c 9

(b) Molten data

Table 5: A simple example of melting. (a) is melted with one colvar, row, yielding the molten dataset
(b). The information in each table is exactly the same, just stored in a di↵erent way.

religion income freq

Agnostic <$10k 27
Agnostic $10-20k 34
Agnostic $20-30k 60
Agnostic $30-40k 81
Agnostic $40-50k 76
Agnostic $50-75k 137
Agnostic $75-100k 122
Agnostic $100-150k 109
Agnostic >150k 84
Agnostic Don’t know/refused 96

Table 6: The first ten rows of the tidied Pew survey dataset on income and religion. The column has
been renamed to income, and value to freq.

Journal of Statistical Software 7

row a b c

a 1 4 7
b 2 5 8
c 3 6 9

(a) Raw data

row column value

a a 1
b a 2
c a 3
a b 4
b b 5
c b 6
a c 7
b c 8
c c 9

(b) Molten data

Table 5: A simple example of melting. (a) is melted with one colvar, row, yielding the molten dataset
(b). The information in each table is exactly the same, just stored in a di↵erent way.

religion income freq

Agnostic <$10k 27
Agnostic $10-20k 34
Agnostic $20-30k 60
Agnostic $30-40k 81
Agnostic $40-50k 76
Agnostic $50-75k 137
Agnostic $75-100k 122
Agnostic $100-150k 109
Agnostic >150k 84
Agnostic Don’t know/refused 96

Table 6: The first ten rows of the tidied Pew survey dataset on income and religion. The column has
been renamed to income, and value to freq.

reshape2::melt
tidyr::gather

from Wickham’s Tidy Data
see also reshape2

Journal of Statistical Software 7

row a b c

a 1 4 7
b 2 5 8
c 3 6 9

(a) Raw data

row column value

a a 1
b a 2
c a 3
a b 4
b b 5
c b 6
a c 7
b c 8
c c 9

(b) Molten data

Table 5: A simple example of melting. (a) is melted with one colvar, row, yielding the molten dataset
(b). The information in each table is exactly the same, just stored in a di↵erent way.

religion income freq

Agnostic <$10k 27
Agnostic $10-20k 34
Agnostic $20-30k 60
Agnostic $30-40k 81
Agnostic $40-50k 76
Agnostic $50-75k 137
Agnostic $75-100k 122
Agnostic $100-150k 109
Agnostic >150k 84
Agnostic Don’t know/refused 96

Table 6: The first ten rows of the tidied Pew survey dataset on income and religion. The column has
been renamed to income, and value to freq.

Journal of Statistical Software 7

row a b c

a 1 4 7
b 2 5 8
c 3 6 9

(a) Raw data

row column value

a a 1
b a 2
c a 3
a b 4
b b 5
c b 6
a c 7
b c 8
c c 9

(b) Molten data

Table 5: A simple example of melting. (a) is melted with one colvar, row, yielding the molten dataset
(b). The information in each table is exactly the same, just stored in a di↵erent way.

religion income freq

Agnostic <$10k 27
Agnostic $10-20k 34
Agnostic $20-30k 60
Agnostic $30-40k 81
Agnostic $40-50k 76
Agnostic $50-75k 137
Agnostic $75-100k 122
Agnostic $100-150k 109
Agnostic >150k 84
Agnostic Don’t know/refused 96

Table 6: The first ten rows of the tidied Pew survey dataset on income and religion. The column has
been renamed to income, and value to freq.

reshape2::cast
tidyr::spread

from Wickham’s Tidy Data
see also reshape2

Journal of Statistical Software 7

row a b c

a 1 4 7
b 2 5 8
c 3 6 9

(a) Raw data

row column value

a a 1
b a 2
c a 3
a b 4
b b 5
c b 6
a c 7
b c 8
c c 9

(b) Molten data

Table 5: A simple example of melting. (a) is melted with one colvar, row, yielding the molten dataset
(b). The information in each table is exactly the same, just stored in a di↵erent way.

religion income freq

Agnostic <$10k 27
Agnostic $10-20k 34
Agnostic $20-30k 60
Agnostic $30-40k 81
Agnostic $40-50k 76
Agnostic $50-75k 137
Agnostic $75-100k 122
Agnostic $100-150k 109
Agnostic >150k 84
Agnostic Don’t know/refused 96

Table 6: The first ten rows of the tidied Pew survey dataset on income and religion. The column has
been renamed to income, and value to freq.

Journal of Statistical Software 7

row a b c

a 1 4 7
b 2 5 8
c 3 6 9

(a) Raw data

row column value

a a 1
b a 2
c a 3
a b 4
b b 5
c b 6
a c 7
b c 8
c c 9

(b) Molten data

Table 5: A simple example of melting. (a) is melted with one colvar, row, yielding the molten dataset
(b). The information in each table is exactly the same, just stored in a di↵erent way.

religion income freq

Agnostic <$10k 27
Agnostic $10-20k 34
Agnostic $20-30k 60
Agnostic $30-40k 81
Agnostic $40-50k 76
Agnostic $50-75k 137
Agnostic $75-100k 122
Agnostic $100-150k 109
Agnostic >150k 84
Agnostic Don’t know/refused 96

Table 6: The first ten rows of the tidied Pew survey dataset on income and religion. The column has
been renamed to income, and value to freq.

spread

gather typical usage pattern:

gather to facilitate analysis and
visualization

spread to make compact tables
that are nicer for eyeballs

relevant data manipulation packages:

tidyr
reshape2
dplyr
plyr

RStudio’s data wrangling cheatsheet

Data Wrangling
with dplyr and tidyr

Cheat Sheet

RStudio® is a trademark of RStudio, Inc. • CC BY RStudio • info@rstudio.com • 844-448-1212 • rstudio.com

Syntax - Helpful conventions for wrangling

dplyr::tbl_df(iris)
Converts data to tbl class. tbl’s are easier to examine than
data frames. R displays only the data that fits onscreen:

dplyr::glimpse(iris)
Information dense summary of tbl data.

utils::View(iris)
View data set in spreadsheet-like display (note capital V).

Source: local data frame [150 x 5]

 Sepal.Length Sepal.Width Petal.Length
1 5.1 3.5 1.4
2 4.9 3.0 1.4
3 4.7 3.2 1.3
4 4.6 3.1 1.5
5 5.0 3.6 1.4
..
Variables not shown: Petal.Width (dbl),
 Species (fctr)

dplyr::%>%
Passes object on le! hand side as first argument (or .
argument) of function on righthand side.

"Piping" with %>% makes code more readable, e.g.
iris %>%
 group_by(Species) %>%
 summarise(avg = mean(Sepal.Width)) %>%
 arrange(avg)

 x %>% f(y) is the same as f(x, y)
y %>% f(x, ., z) is the same as f(x, y, z)

Reshaping Data - Change the layout of a data set

Subset Observations (Rows) Subset Variables (Columns)

F M A

Each variable is saved
in its own column

F M A

Each observation is
saved in its own row

In a tidy
data set: &

Tidy Data - A foundation for wrangling in R

Tidy data complements R’s vectorized
operations. R will automatically preserve
observations as you manipulate variables.
No other format works as intuitively with R.

FAM

M * A

*

tidyr::gather(cases, "year", "n", 2:4)
Gather columns into rows.

tidyr::unite(data, col, ..., sep)
Unite several columns into one.

dplyr::data_frame(a = 1:3, b = 4:6)
Combine vectors into data frame
(optimized).

dplyr::arrange(mtcars, mpg)
Order rows by values of a column
(low to high).

dplyr::arrange(mtcars, desc(mpg))
Order rows by values of a column
(high to low).

dplyr::rename(tb, y = year)
Rename the columns of a data
frame.

tidyr::spread(pollution, size, amount)
Spread rows into columns.

tidyr::separate(storms, date, c("y", "m", "d"))
Separate one column into several.

wwwwwwA1005A1013A1010A1010

wwp110110100745451009wwp110110100745451009 wwp110110100745451009wwp110110100745451009

wppw11010071007110451009100945wwwww110110110110110 wwww
dplyr::filter(iris, Sepal.Length > 7)

Extract rows that meet logical criteria.
dplyr::distinct(iris)

Remove duplicate rows.
dplyr::sample_frac(iris, 0.5, replace = TRUE)

Randomly select fraction of rows.
dplyr::sample_n(iris, 10, replace = TRUE)

Randomly select n rows.
dplyr::slice(iris, 10:15)

Select rows by position.
dplyr::top_n(storms, 2, date)

Select and order top n entries (by group if grouped data).

< Less than != Not equal to
> Greater than %in% Group membership
== Equal to is.na Is NA
<= Less than or equal to !is.na Is not NA
>= Greater than or equal to &,|,!,xor,any,all Boolean operators

Logic in R - ?Comparison, ?base::Logic

dplyr::select(iris, Sepal.Width, Petal.Length, Species)
Select columns by name or helper function.

Helper functions for select - ?select
select(iris, contains("."))

Select columns whose name contains a character string.
select(iris, ends_with("Length"))

Select columns whose name ends with a character string.
select(iris, everything())

Select every column.
select(iris, matches(".t."))

Select columns whose name matches a regular expression.
select(iris, num_range("x", 1:5))

Select columns named x1, x2, x3, x4, x5.
select(iris, one_of(c("Species", "Genus")))

Select columns whose names are in a group of names.
select(iris, starts_with("Sepal"))

Select columns whose name starts with a character string.
select(iris, Sepal.Length:Petal.Width)

Select all columns between Sepal.Length and Petal.Width (inclusive).
select(iris, -Species)

Select all columns except Species.
Learn more with browseVignettes(package = c("dplyr", "tidyr")) • dplyr 0.4.0• tidyr 0.2.0 • Updated: 1/15

wwwwwwA1005A1013A1010A1010

devtools::install_github("rstudio/EDAWR") for data sets

http://www.rstudio.com/resources/cheatsheets/
http://www.rstudio.com/resources/cheatsheets/

RStudio’s data visualization cheatsheet

Graphical Primitives

Data Visualization
with ggplot2

Cheat Sheet

RStudio® is a trademark of RStudio, Inc. • CC BY RStudio • info@rstudio.com • 844-448-1212 • rstudio.com

Geoms - Use a geom to represent data points, use the geom’s aesthetic properties to represent variables. Each function returns a layer.

One Variable

a + geom_area(stat = "bin")
x, y, alpha, color, fill, linetype, size
b + geom_area(aes(y = ..density..), stat = "bin")

a + geom_density(kernel = "gaussian")
x, y, alpha, color, fill, linetype, size, weight
b + geom_density(aes(y = ..county..))

a + geom_dotplot()
x, y, alpha, color, fill

a + geom_freqpoly()
x, y, alpha, color, linetype, size
b + geom_freqpoly(aes(y = ..density..))

a + geom_histogram(binwidth = 5)
x, y, alpha, color, fill, linetype, size, weight
b + geom_histogram(aes(y = ..density..))

Discrete
b <- ggplot(mpg, aes(fl))

b + geom_bar()
x, alpha, color, fill, linetype, size, weight

Continuous
a <- ggplot(mpg, aes(hwy))

Two Variables

Continuous Function

Discrete X, Discrete Y
h <- ggplot(diamonds, aes(cut, color))

h + geom_jitter()
x, y, alpha, color, fill, shape, size

Discrete X, Continuous Y
g <- ggplot(mpg, aes(class, hwy))

g + geom_bar(stat = "identity")
x, y, alpha, color, fill, linetype, size, weight

g + geom_boxplot()
lower, middle, upper, x, ymax, ymin, alpha,
color, fill, linetype, shape, size, weight

g + geom_dotplot(binaxis = "y",
stackdir = "center")
x, y, alpha, color, fill

g + geom_violin(scale = "area")
x, y, alpha, color, fill, linetype, size, weight

Continuous X, Continuous Y
f <- ggplot(mpg, aes(cty, hwy))

f + geom_blank()
(Useful for expanding limits)

f + geom_jitter()
x, y, alpha, color, fill, shape, size

f + geom_point()
x, y, alpha, color, fill, shape, size

f + geom_quantile()
x, y, alpha, color, linetype, size, weight

f + geom_rug(sides = "bl")
alpha, color, linetype, size

f + geom_smooth(model = lm)
x, y, alpha, color, fill, linetype, size, weight

f + geom_text(aes(label = cty))
x, y, label, alpha, angle, color, family, fontface,
hjust, lineheight, size, vjust

Three Variables

m + geom_contour(aes(z = z))
x, y, z, alpha, colour, linetype, size, weight

seals$z <- with(seals, sqrt(delta_long^2 + delta_lat^2))
m <- ggplot(seals, aes(long, lat))

j <- ggplot(economics, aes(date, unemploy))
j + geom_area()

x, y, alpha, color, fill, linetype, size

j + geom_line()
x, y, alpha, color, linetype, size

j + geom_step(direction = "hv")
x, y, alpha, color, linetype, size

Continuous Bivariate Distribution
i <- ggplot(movies, aes(year, rating))
i + geom_bin2d(binwidth = c(5, 0.5))

xmax, xmin, ymax, ymin, alpha, color, fill,
linetype, size, weight

i + geom_density2d()
x, y, alpha, colour, linetype, size

i + geom_hex()
x, y, alpha, colour, fill size

e + geom_segment(aes(
xend = long + delta_long,
yend = lat + delta_lat))
x, xend, y, yend, alpha, color, linetype, size

e + geom_rect(aes(xmin = long, ymin = lat,
xmax= long + delta_long,
ymax = lat + delta_lat))
xmax, xmin, ymax, ymin, alpha, color, fill,
linetype, size

c + geom_polygon(aes(group = group))
x, y, alpha, color, fill, linetype, size

e <- ggplot(seals, aes(x = long, y = lat))

m + geom_raster(aes(fill = z), hjust=0.5,
vjust=0.5, interpolate=FALSE)
x, y, alpha, fill (fast)

m + geom_tile(aes(fill = z))
x, y, alpha, color, fill, linetype, size (slow)

k + geom_crossbar(fatten = 2)
x, y, ymax, ymin, alpha, color, fill, linetype,
size

k + geom_errorbar()
x, ymax, ymin, alpha, color, linetype, size,
width (also geom_errorbarh())

k + geom_linerange()
x, ymin, ymax, alpha, color, linetype, size

k + geom_pointrange()
x, y, ymin, ymax, alpha, color, fill, linetype,
shape, size

Visualizing error
df <- data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2)

k <- ggplot(df, aes(grp, fit, ymin = fit-se, ymax = fit+se))

d + geom_path(lineend="butt",
linejoin="round’, linemitre=1)
x, y, alpha, color, linetype, size

d + geom_ribbon(aes(ymin=unemploy - 900,
ymax=unemploy + 900))
x, ymax, ymin, alpha, color, fill, linetype, size

d <- ggplot(economics, aes(date, unemploy))

c <- ggplot(map, aes(long, lat))

data <- data.frame(murder = USArrests$Murder,
state = tolower(rownames(USArrests)))

map <- map_data("state")
l <- ggplot(data, aes(fill = murder))

l + geom_map(aes(map_id = state), map = map) +
expand_limits(x = map$long, y = map$lat)
map_id, alpha, color, fill, linetype, size

Maps

AB
C

Basics

Build a graph with ggplot() or qplot()

ggplot2 is based on the grammar of graphics, the
idea that you can build every graph from the same
few components: a data set, a set of geoms—visual
marks that represent data points, and a coordinate
system.

To display data values, map variables in the data set
to aesthetic properties of the geom like size, color,
and x and y locations.

Graphical Primitives

Data Visualization
with ggplot2

Cheat Sheet

RStudio® is a trademark of RStudio, Inc. • CC BY RStudio • info@rstudio.com • 844-448-1212 • rstudio.com Learn more at docs.ggplot2.org • ggplot2 0.9.3.1 • Updated: 3/15

Geoms - Use a geom to represent data points, use the geom’s aesthetic properties to represent variables

Basics

One Variable

a + geom_area(stat = "bin")
x, y, alpha, color, fill, linetype, size
b + geom_area(aes(y = ..density..), stat = "bin")

a + geom_density(kernal = "gaussian")
x, y, alpha, color, fill, linetype, size, weight
b + geom_density(aes(y = ..county..))

a+ geom_dotplot()
x, y, alpha, color, fill

a + geom_freqpoly()
x, y, alpha, color, linetype, size
b + geom_freqpoly(aes(y = ..density..))

a + geom_histogram(binwidth = 5)
x, y, alpha, color, fill, linetype, size, weight
b + geom_histogram(aes(y = ..density..))

Discrete
a <- ggplot(mpg, aes(fl))

b + geom_bar()
x, alpha, color, fill, linetype, size, weight

Continuous
a <- ggplot(mpg, aes(hwy))

Two Variables

Discrete X, Discrete Y
h <- ggplot(diamonds, aes(cut, color))

h + geom_jitter()
x, y, alpha, color, fill, shape, size

Discrete X, Continuous Y
g <- ggplot(mpg, aes(class, hwy))

g + geom_bar(stat = "identity")
x, y, alpha, color, fill, linetype, size, weight

g + geom_boxplot()
lower, middle, upper, x, ymax, ymin, alpha,
color, fill, linetype, shape, size, weight

g + geom_dotplot(binaxis = "y",
stackdir = "center")
x, y, alpha, color, fill

g + geom_violin(scale = "area")
x, y, alpha, color, fill, linetype, size, weight

Continuous X, Continuous Y
f <- ggplot(mpg, aes(cty, hwy))

f + geom_blank()

f + geom_jitter()
x, y, alpha, color, fill, shape, size

f + geom_point()
x, y, alpha, color, fill, shape, size

f + geom_quantile()
x, y, alpha, color, linetype, size, weight

f + geom_rug(sides = "bl")
alpha, color, linetype, size

f + geom_smooth(model = lm)
x, y, alpha, color, fill, linetype, size, weight

f + geom_text(aes(label = cty))
x, y, label, alpha, angle, color, family, fontface,
hjust, lineheight, size, vjust

Three Variables

i + geom_contour(aes(z = z))
x, y, z, alpha, colour, linetype, size, weight

seals$z <- with(seals, sqrt(delta_long^2 + delta_lat^2))
i <- ggplot(seals, aes(long, lat))

g <- ggplot(economics, aes(date, unemploy))
Continuous Function

g + geom_area()
x, y, alpha, color, fill, linetype, size

g + geom_line()
x, y, alpha, color, linetype, size

g + geom_step(direction = "hv")
x, y, alpha, color, linetype, size

Continuous Bivariate Distribution
h <- ggplot(movies, aes(year, rating))
h + geom_bin2d(binwidth = c(5, 0.5))

xmax, xmin, ymax, ymin, alpha, color, fill,
linetype, size, weight

h + geom_density2d()
x, y, alpha, colour, linetype, size

h + geom_hex()
x, y, alpha, colour, fill size

d + geom_segment(aes(
xend = long + delta_long,
yend = lat + delta_lat))
x, xend, y, yend, alpha, color, linetype, size

d + geom_rect(aes(xmin = long, ymin = lat,
xmax= long + delta_long,
ymax = lat + delta_lat))
xmax, xmin, ymax, ymin, alpha, color, fill,
linetype, size

c + geom_polygon(aes(group = group))
x, y, alpha, color, fill, linetype, size

d<- ggplot(seals, aes(x = long, y = lat))

i + geom_raster(aes(fill = z), hjust=0.5,
vjust=0.5, interpolate=FALSE)
x, y, alpha, fill

i + geom_tile(aes(fill = z))
x, y, alpha, color, fill, linetype, size

e + geom_crossbar(fatten = 2)
x, y, ymax, ymin, alpha, color, fill, linetype,
size

e + geom_errorbar()
x, ymax, ymin, alpha, color, linetype, size,
width (also geom_errorbarh())

e + geom_linerange()
x, ymin, ymax, alpha, color, linetype, size

e + geom_pointrange()
x, y, ymin, ymax, alpha, color, fill, linetype,
shape, size

Visualizing error
df <- data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2)

e <- ggplot(df, aes(grp, fit, ymin = fit-se, ymax = fit+se))

g + geom_path(lineend="butt",
linejoin="round’, linemitre=1)
x, y, alpha, color, linetype, size

g + geom_ribbon(aes(ymin=unemploy - 900,
ymax=unemploy + 900))
x, ymax, ymin, alpha, color, fill, linetype, size

g <- ggplot(economics, aes(date, unemploy))

c <- ggplot(map, aes(long, lat))

data <- data.frame(murder = USArrests$Murder,
state = tolower(rownames(USArrests)))

map <- map_data("state")
e <- ggplot(data, aes(fill = murder))

e + geom_map(aes(map_id = state), map = map) +
expand_limits(x = map$long, y = map$lat)
map_id, alpha, color, fill, linetype, size

Maps

F M A

=
1

2

3

0
0 1 2 3 4

4

1

2

3

0
0 1 2 3 4

4

+

data geom coordinate
system

plot

+

F M A

=
1

2

3

0
0 1 2 3 4

4

1

2

3

0
0 1 2 3 4

4

data geom coordinate
system

plot
x = F
y = A
color = F
size = A

1

2

3

0
0 1 2 3 4

4

plot

+

F M A

=
1

2

3

0
0 1 2 3 4

4

data geom coordinate
systemx = F

y = A

x = F
y = A

Graphical Primitives

Data Visualization
with ggplot2

Cheat Sheet

RStudio® is a trademark of RStudio, Inc. • CC BY RStudio • info@rstudio.com • 844-448-1212 • rstudio.com Learn more at docs.ggplot2.org • ggplot2 0.9.3.1 • Updated: 3/15

Geoms - Use a geom to represent data points, use the geom’s aesthetic properties to represent variables

Basics

One Variable

a + geom_area(stat = "bin")
x, y, alpha, color, fill, linetype, size
b + geom_area(aes(y = ..density..), stat = "bin")

a + geom_density(kernal = "gaussian")
x, y, alpha, color, fill, linetype, size, weight
b + geom_density(aes(y = ..county..))

a+ geom_dotplot()
x, y, alpha, color, fill

a + geom_freqpoly()
x, y, alpha, color, linetype, size
b + geom_freqpoly(aes(y = ..density..))

a + geom_histogram(binwidth = 5)
x, y, alpha, color, fill, linetype, size, weight
b + geom_histogram(aes(y = ..density..))

Discrete
a <- ggplot(mpg, aes(fl))

b + geom_bar()
x, alpha, color, fill, linetype, size, weight

Continuous
a <- ggplot(mpg, aes(hwy))

Two Variables

Discrete X, Discrete Y
h <- ggplot(diamonds, aes(cut, color))

h + geom_jitter()
x, y, alpha, color, fill, shape, size

Discrete X, Continuous Y
g <- ggplot(mpg, aes(class, hwy))

g + geom_bar(stat = "identity")
x, y, alpha, color, fill, linetype, size, weight

g + geom_boxplot()
lower, middle, upper, x, ymax, ymin, alpha,
color, fill, linetype, shape, size, weight

g + geom_dotplot(binaxis = "y",
stackdir = "center")
x, y, alpha, color, fill

g + geom_violin(scale = "area")
x, y, alpha, color, fill, linetype, size, weight

Continuous X, Continuous Y
f <- ggplot(mpg, aes(cty, hwy))

f + geom_blank()

f + geom_jitter()
x, y, alpha, color, fill, shape, size

f + geom_point()
x, y, alpha, color, fill, shape, size

f + geom_quantile()
x, y, alpha, color, linetype, size, weight

f + geom_rug(sides = "bl")
alpha, color, linetype, size

f + geom_smooth(model = lm)
x, y, alpha, color, fill, linetype, size, weight

f + geom_text(aes(label = cty))
x, y, label, alpha, angle, color, family, fontface,
hjust, lineheight, size, vjust

Three Variables

i + geom_contour(aes(z = z))
x, y, z, alpha, colour, linetype, size, weight

seals$z <- with(seals, sqrt(delta_long^2 + delta_lat^2))
i <- ggplot(seals, aes(long, lat))

g <- ggplot(economics, aes(date, unemploy))
Continuous Function

g + geom_area()
x, y, alpha, color, fill, linetype, size

g + geom_line()
x, y, alpha, color, linetype, size

g + geom_step(direction = "hv")
x, y, alpha, color, linetype, size

Continuous Bivariate Distribution
h <- ggplot(movies, aes(year, rating))
h + geom_bin2d(binwidth = c(5, 0.5))

xmax, xmin, ymax, ymin, alpha, color, fill,
linetype, size, weight

h + geom_density2d()
x, y, alpha, colour, linetype, size

h + geom_hex()
x, y, alpha, colour, fill size

d + geom_segment(aes(
xend = long + delta_long,
yend = lat + delta_lat))
x, xend, y, yend, alpha, color, linetype, size

d + geom_rect(aes(xmin = long, ymin = lat,
xmax= long + delta_long,
ymax = lat + delta_lat))
xmax, xmin, ymax, ymin, alpha, color, fill,
linetype, size

c + geom_polygon(aes(group = group))
x, y, alpha, color, fill, linetype, size

d<- ggplot(seals, aes(x = long, y = lat))

i + geom_raster(aes(fill = z), hjust=0.5,
vjust=0.5, interpolate=FALSE)
x, y, alpha, fill

i + geom_tile(aes(fill = z))
x, y, alpha, color, fill, linetype, size

e + geom_crossbar(fatten = 2)
x, y, ymax, ymin, alpha, color, fill, linetype,
size

e + geom_errorbar()
x, ymax, ymin, alpha, color, linetype, size,
width (also geom_errorbarh())

e + geom_linerange()
x, ymin, ymax, alpha, color, linetype, size

e + geom_pointrange()
x, y, ymin, ymax, alpha, color, fill, linetype,
shape, size

Visualizing error
df <- data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2)

e <- ggplot(df, aes(grp, fit, ymin = fit-se, ymax = fit+se))

g + geom_path(lineend="butt",
linejoin="round’, linemitre=1)
x, y, alpha, color, linetype, size

g + geom_ribbon(aes(ymin=unemploy - 900,
ymax=unemploy + 900))
x, ymax, ymin, alpha, color, fill, linetype, size

g <- ggplot(economics, aes(date, unemploy))

c <- ggplot(map, aes(long, lat))

data <- data.frame(murder = USArrests$Murder,
state = tolower(rownames(USArrests)))

map <- map_data("state")
e <- ggplot(data, aes(fill = murder))

e + geom_map(aes(map_id = state), map = map) +
expand_limits(x = map$long, y = map$lat)
map_id, alpha, color, fill, linetype, size

Maps

F M A

=
1

2

3

0
0 1 2 3 4

4

1

2

3

0
0 1 2 3 4

4

+

data geom coordinate
system

plot

+

F M A

=
1

2

3

0
0 1 2 3 4

4

1

2

3

0
0 1 2 3 4

4

data geom coordinate
system

plot
x = F
y = A
color = F
size = A

1

2

3

0
0 1 2 3 4

4

plot

+

F M A

=
1

2

3

0
0 1 2 3 4

4

data geom coordinate
systemx = F

y = A

x = F
y = A

ggsave("plot.png", width = 5, height = 5)
Saves last plot as 5’ x 5’ file named "plot.png" in
working directory. Matches file type to file extension.

qplot(x = cty, y = hwy, color = cyl, data = mpg, geom = "point")
Creates a complete plot with given data, geom, and
mappings. Supplies many useful defaults.

aesthetic mappings data geom

ggplot(data = mpg, aes(x = cty, y = hwy))
Begins a plot that you finish by adding layers to. No
defaults, but provides more control than qplot().

ggplot(mpg, aes(hwy, cty)) +
 geom_point(aes(color = cyl)) +
 geom_smooth(method ="lm") +
 coord_cartesian() +
 scale_color_gradient() +
 theme_bw()

data
add layers,

elements with +

layer = geom +
default stat +
layer specific

mappings

additional
elements

Add a new layer to a plot with a geom_*()
or stat_*() function. Each provides a geom, a
set of aesthetic mappings, and a default stat

and position adjustment.

last_plot()
Returns the last plot

Learn more at docs.ggplot2.org • ggplot2 1.0.0 • Updated: 4/15

http://www.rstudio.com/resources/cheatsheets/
http://www.rstudio.com/resources/cheatsheets/

ggplot2

we will not use qplot() function

no training wheels

you’re here ...
I assume you want to ride this bike

data, in data.frame form

aesthetic: map variables into properties people can
perceive visually ... position, color, line type?

geom: specifics of what people see ... points? lines?

scale: map data values into “computer” values

stat: summarization/transformation of data

facet: juxtapose related mini-plots of data subsets

30 3 Mastering the grammar

This new dataset is a result of applying the aesthetic mappings to the original
data. We can create many different types of plots using this data. The scatter-
plot uses points, but were we instead to draw lines we would get a line plot. If
we used bars, we’d get a bar plot. Neither of those examples makes sense for
this data, but we could still draw them, as in Figure 3.2. In ggplot2 we can
produce many plots that don’t make sense, yet are grammatically valid. This
is no different than English, where we can create senseless but grammatical
sentences like the angry rock barked like a comma.

x y colour

1.8 29 4
1.8 29 4
2.0 31 4
2.0 30 4
2.8 26 6
2.8 26 6
3.1 27 6
1.8 26 4
1.8 25 4
2.0 28 4

Table 3.2: First 10 rows from mpg rearranged into the format required for a scatterplot.
This data frame contains all the data to be displayed on the plot.

displ

hw
y

15

20

25

30

35

40

2 3 4 5 6 7

displ

hw
y

0

10

20

30

40

2 3 4 5 6 7

Fig. 3.2: Instead of using points to represent the data, we could use other geoms like
lines (left) or bars (right). Neither of these geoms makes sense for this data, but they
are still grammatically valid.

28 3 Mastering the grammar

This chapter begins by describing in detail the process of drawing a simple
plot. Section 3.3 starts with a simple scatterplot, then Section 3.4 makes it
more complex by adding a smooth line and faceting. While working through
these examples you will be introduced to all six components of the grammar,
which are then defined more precisely in Section 3.5. The chapter concludes
with Section 3.6, which describes how the various components map to data
structures in R.

3.2 Fuel economy data

Consider the fuel economy dataset, mpg, a sample of which is illustrated in
Table 3.1. It records make, model, class, engine size, transmission and fuel
economy for a selection of US cars in 1999 and 2008. It contains the 38 models
that were updated every year, an indicator that the car was a popular model.
These models include popular cars like the Audi A4, Honda Civic, Hyundai
Sonata, Nissan Maxima, Toyota Camry and Volkswagen Jetta. This data
comes from the EPA fuel economy website, http://fueleconomy.gov.

manufacturer model disp year cyl cty hwy class

audi a4 1.8 1999 4 18 29 compact
audi a4 1.8 1999 4 21 29 compact
audi a4 2.0 2008 4 20 31 compact
audi a4 2.0 2008 4 21 30 compact
audi a4 2.8 1999 6 16 26 compact
audi a4 2.8 1999 6 18 26 compact
audi a4 3.1 2008 6 18 27 compact
audi a4 quattro 1.8 1999 4 18 26 compact
audi a4 quattro 1.8 1999 4 16 25 compact
audi a4 quattro 2.0 2008 4 20 28 compact

Table 3.1: The first 10 cars in the mpg dataset, included in the ggplot2 package. cty
and hwy record miles per gallon (mpg) for city and highway driving, respectively,
and displ is the engine displacement in litres.

This dataset suggests many interesting questions. How are engine size and
fuel economy related? Do certain manufacturers care more about economy
than others? Has fuel economy improved in the last ten years? We will try to
answer the first question and in the process learn more details about how the
scatterplot is created.

3.3 Building a scatterplot 29

3.3 Building a scatterplot

Consider Figure 3.1, one attempt to answer this question. It is a scatterplot of
two continuous variables (engine displacement and highway mpg), with points
coloured by a third variable (number of cylinders). From your experience in
the previous chapter, you should have a pretty good feel for how to create this
plot with qplot(). But what is going on underneath the surface? How does
ggplot2 draw this plot?

qplot(displ, hwy, data = mpg, colour = factor(cyl))

displ

hw
y

15

20

25

30

35

40

!!

!
!

!
!

!
! !

!

!

!
!!

!

!

!

!!

!

!
!

!
!

!

!
!
!

!

!

!
!

!
!

!

!
!

!

!! !!
!

!

!

!

!!

!

!

!!

!

!

!!
!

!

!

!

!

!!

!

!

!

!!

!

!

!

!!

!

!

!

!

!!
!
! !!

!
!

!!
!

!! !!
!

!
!

!

!

!

!!

!!

!

!
!

! !

!
!

!!! !

!

!

!

!!

!
!

!

!

!!

!

!!!

!

!
!

!

!

!
!!

! !

!!

!

! !
!
!

!

!

!

!!

!

!!
!

!

!
!

!

!
!
!

!! !

!

!

!

!

! !

!

!

!
!

!

!

!
!

!

!!

!

!

!

!

!

!
!

!

!
!

!

!!
!

!

!
!

!

!

! !
!

!

!
!!
!

!

!

!
!
!
!

!

!

!

!
!

!
!

! !

!

!
!

!
!

!
!

!

!

!

!

2 3 4 5 6 7

factor(cyl)
! 4

! 5

! 6

! 8

Fig. 3.1: A scatterplot of engine displacement in litres (displ) vs. average highway
miles per gallon (hwy). Points are coloured according to number of cylinders. This
plot summarises the most important factor governing fuel economy: engine size.

Mapping aesthetics to data

What precisely is a scatterplot? You have seen many before and have probably
even drawn some by hand. A scatterplot represents each observation as a
point (•), positioned according to the value of two variables. As well as a
horizontal and vertical position, each point also has a size, a colour and a
shape. These attributes are called aesthetics, and are the properties that can
be perceived on the graphic. Each aesthetic can be mapped to a variable, or
set to a constant value. In Figure 3.1 displ is mapped to horizontal position,
hwy to vertical position and cyl to colour. Size and shape are not mapped to
variables, but remain at their (constant) default values.

Once we have these mappings we can create a new dataset that records this
information. Table 3.2 shows the first 10 rows of the data behind Figure 3.1.

mapping data
to aesthetics

32 3 Mastering the grammar

to physical units (e.g., pixels and colours) that the computer can display. This
conversion process is called scaling and performed by scales. Now that these
values are meaningful to the computer, they may not be meaningful to us:
colours are represented by a six-letter hexadecimal string, sizes by a number
and shapes by an integer. These aesthetic specifications that are meaningful
to R are described in Appendix B.

In this example, we have three aesthetics that need to be scaled: horizontal
position (x), vertical position (y) and colour. Scaling position is easy in this
example because we are using the default linear scales. We need only a linear
mapping from the range of the data to [0, 1]. We use [0, 1] instead of exact
pixels because the drawing system that ggplot2 uses, grid, takes care of that
final conversion for us. A final step determines how the two positions (x and
y) are combined to form the final location on the plot. This is done by the
coordinate system, or coord. In most cases this will be Cartesian coordinates,
but it might be polar coordinates, or a spherical projection used for a map.

The process for mapping the colour is a little more complicated, as we have
a non-numeric result: colours. However, colours can be thought of as having
three components, corresponding to the three types of colour-detecting cells in
the human eye. These three cell types give rise to a three-dimensional colour
space. Scaling then involves mapping the data values to points in this space.
There are many ways to do this, but here since cyl is a categorical variable we
map values to evenly spaced hues on the colour wheel, as shown in Figure 3.4.
A different mapping is used when the variable is continuous.

The result of these conversions is Table 3.4, which contains values that
have meaning to the computer. As well as aesthetics that have been mapped
to variable, we also include aesthetics that are constant. We need these so that
the aesthetics for each point are completely specified and R can draw the plot.

x y colour size shape

0.037 0.531 #FF6C91 1 19
0.037 0.531 #FF6C91 1 19
0.074 0.594 #FF6C91 1 19
0.074 0.562 #FF6C91 1 19
0.222 0.438 #00C1A9 1 19
0.222 0.438 #00C1A9 1 19
0.278 0.469 #00C1A9 1 19
0.037 0.438 #FF6C91 1 19
0.037 0.406 #FF6C91 1 19
0.074 0.500 #FF6C91 1 19

Table 3.4: Simple dataset with variables mapped into aesthetic space. The description
of colours is intimidating, but this is the form that R uses internally. Default values
for other aesthetics are filled in: the points will be filled circles (shape 19 in R) with
a 1-mm diameter.

scaling:
data units ➙
“computer” units

base graphics cause a figure to exist as a “side effect”

ggplot2 (and lattice) construct the figure as an R object

obviously you’ll need to print it to see it

this tutorial consisted largely of live
coding ... see the repo for indicative content

https://github.com/jennybc/ggplot2-tutorial

https://github.com/jennybc/ggplot2-tutorial
https://github.com/jennybc/ggplot2-tutorial

saving figures to file

do not save figures mouse-y style
not self-documenting
not reproducible

http://cache.desktopnexus.com/thumbnails/180681-bigthumbnail.jpg

http://cache.desktopnexus.com/thumbnails/180681-bigthumbnail.jpg
http://cache.desktopnexus.com/thumbnails/180681-bigthumbnail.jpg

pdf("awesome_figure.pdf")
plot(1:10)
dev.off()

postscript(), svg(), png(), tiff(),

most correct method for base plots:

plot(1:10)
dev.print(pdf,"awesome_figure.pdf")

fine for everyday use:

postscript(), svg(), png(), tiff(),

ggplot2 has a special function, ggsave(), that is really
really nice for saving plots

very smart defaults!

guesses file format from extension

doesn’t force you to do annoying stuff with dots per
inch (but you can!)

Data Visualization with R & ggplot2

Karthik Ram

September 2, 2013

Data Visualization with R & ggplot2 Karthik Ram

next slide from here:

•
If the plot is on your screen

ggsave("˜/path/to/figure/filename.png")

•
If your plot is assigned to an object

ggsave(plot1, file = "˜/path/to/figure/filename.png")

•
Specify a size

ggsave(file = "/path/to/figure/filename.png", width = 6,
height =4)

•
or any format (pdf, png, eps, svg, jpg)

ggsave(file = "/path/to/figure/filename.eps")
ggsave(file = "/path/to/figure/filename.jpg")
ggsave(file = "/path/to/figure/filename.pdf")

Data Visualization with R & ggplot2 Karthik Ram

p	
 <-­‐	
 ggplot(...)	
 +	
 ...
p	
 #delete	
 or	
 comment	
 this	
 out	
 if	
 non-­‐interactive
ggsave(p,	
 file	
 =	
 “path/to/figure/filename.png”)

Use this workflow if the script might be run non-
interactively.

Why? If you do not specify the plot explicitly, the
default is to draw the last interactively drawn plot.
That won’t exist in a non-interactive session and
your plot files will be blank.

This can be frustrating. Ask me how I know.

See more of my figure making wisdom here:
http://stat545-ubc.github.io/graph00_index.html

http://stat545-ubc.github.io/graph00_index.html
http://stat545-ubc.github.io/graph00_index.html

