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Preface

This book serves as an introductory guide for students and analysts who need
to work with survival time data. The minimum prerequisites are basic applied
courses in linear regression and categorical data analysis. Students who also have
taken a master’s level course in statistical theory will be well prepared to work
through this book, since frequent reference is made to maximum likelihood theory.
Students lacking this training may still be able to understand most of the material,
provided they have an understanding of the basic concepts of differential and
integral calculus. Specifically, students should understand the concept of the limit,
and they should knowwhat derivatives and integrals are and be able to evaluate them
in some basic cases.

The material for this book has come from two sources. The first source is
an introductory class in survival analysis for graduate students in epidemiology
and biostatistics at the Rutgers School of Public Health. Biostatistics students, as
one would expect, have a much firmer grasp of more mathematical aspects of
statistics than do epidemiology students. Still, I have found that those epidemiology
students with strong quantitative backgrounds have been able to understand some
mathematical statistical procedures such as score and likelihood ratio tests, provided
that they are not expected to symbolically differentiate or integrate complex
formulas. In this book I have, when possible, used the numerical capabilities of the
R system to substitute for symbolic manipulation. The second source of material
is derived from collaborations with physicians and epidemiologists at the Rutgers
Cancer Institute of New Jersey and at the Rutgers Robert Wood Johnson Medical
School. A number of the data sets in this text are derived from these collaborations.
Also, the experience of training statistical analysts to work on these data sets
provided additional inspiration for the book.

The first chapter introduces the concepts of survival times and how right
censoring occurs and describes several of the datasets that will be used throughout
the book. Chapter 2 presents fundamentals of survival theory. This includes hazard,
probability density, survival functions, and how they are related. The hazard
function is illustrated using both life table data and using some common parametric
distributions. The chapter ends with a brief introduction to properties of maximum
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likelihood estimates using the exponential distribution as an illustration. Chapter 3
discusses the Kaplan-Meier estimate of the survival function and several related
concepts such as the median survival and its confidence interval. Also discussed
in this chapter are smoothing of the hazard function and how to accommodate left
truncation into the Kaplan-Meier estimate.

Chapter 4 discusses the log-rank test for comparing survival distributions and
also some modified linear rank tests. Stratified tests are also discussed, along with
an example where stratification can reverse the apparent direction of a treatment
effect in a survival example of Simpson’s paradox. In Chapter 5, we present the
Cox proportional hazards model and partial likelihood function in the context of
comparing two groups of survival data. There we illustrate the Wald, score, and
likelihood ratio tests in this basic context. Left-truncated survival data and the partial
likelihood are also discussed.

Chapter 6 presents methods for model selection and extends and illustrates the
proportional hazards model in situations where there are multiple possible predictor
covariates. Chapter 7 presents diagnostic residual plots that are useful for assessing
model assumptions. Chapter 8 discusses how to adapt the survival models discussed
earlier to allow for time-dependent covariates.

The next few chapters discuss some important special situations. Chapter 9
discusses multiple outcomes, which can occur as clustered survival times or in
a competing risks framework, where only the first of multiple outcomes can be
observed. Chapter 10 discusses parametric survival models, and Chapter 11 covers
the critically important design question of how to determine the power and sample
size of a proposed study that has a survival outcome. Finally, Chapter 12 presents
some additional topics, including the piecewise exponential distribution, methods
for handling interval censoring, and the lasso method for handling survival data with
large numbers of predictors. Many of the data sets discussed in the text are available
in the accompanying R package “asaur” (for “Applied Survival Analysis Using R”),
while others are in other packages. All are freely available for download from the
Central R Archive Network at cran.r-project.org. The R-code discussed in the book
is available for download at http://www.springer.com/us/book/9783319312439

A key feature of this book is the integration of the R statistical system with
the survival analysis material. Not only do we show the reader how to use R
functions to fit survival models and how to interpret the results, but we also use R
to illustrate how survival quantities are computed. Typically we use small examples
to illustrate in detail how one constructs survival tests, partial likelihood models,
and diagnostics and then proceed to more complicated examples. Most of the
survival functions will require that the “survival” library be attached using the
“library(survival)” statement. The “survival” package is included by default; other
packages referred to in the text must be explicitly downloaded and installed. The
appendix includes both some basics of the R language and special features relevant
to the survival calculations used elsewhere in the book. Users not already familiar
with the R system should refer to one of the many online resources for more detailed
information.

cran.r-project.org
http://www.springer.com/us/book/9783319312439
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Chapter 1
Introduction

1.1 What Is Survival Analysis?

Survival analysis is the study of survival times and of the factors that influence
them. Types of studies with survival outcomes include clinical trials, prospective and
retrospective observational studies, and animal experiments. Examples of survival
times include time from birth until death, time from entry into a clinical trial until
death or disease progression, or time from birth to development of breast cancer
(that is, age of onset). The survival endpoint can also refer a positive event. For
example, one might be interested in the time from entry into a clinical trial until
tumor response. Survival studies can involve estimation of the survival distribution,
comparisons of the survival distributions of various treatments or interventions, or
elucidation of the factors that influence survival times. As we shall see, many of the
techniques we study have analogues in generalized linear models such as linear or
logistic regression.

Survival analysis is a difficult subject, and a full exposition of its principles would
require readers to have a background not only in basic statistical theory but also in
advanced topics in the theory of probability. Fortunately,many of the most important
concepts in survival analysis can be presented at a more elementary level. The aim
of this book is to provide the reader with an understanding of these principles and
also to serve as a guide to implementing these ideas in a practical setting. We shall
use the R statistical system extensively throughout the book because (1) it is a
high-quality system for doing statistics, (2) it includes a wealth of enhancements
and packages for doing survival analysis, (3) its interactive design will allow us
to illustrate survival concepts, and (4) it is an open source package available for
download to anyone at no cost from the main R website, www.R-project.org. This
book is meant to be used as well as read, and the reader is encouraged to use R
to try out the examples discussed in the text and to do the exercises at the end of
each chapter. It is expected that readers are already familiar with the R language; for
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2 1 Introduction

those who are not, an overview of R may be found in the appendix, and links to more
extensive R guides and manuals may be found on the main R website. Readers who
master the techniques in this book will be equipped to use R to carry out survival
analyses in a practical setting, and those who are familiar with one of the many
excellent commercial statistical packages should be able to adapt what they have
learned to the particular command syntax and output style of that package.

1.2 What You Need to Know to Use This Book

Survival analysis resembles linear and logistic regression analysis in several ways:
there is (typically) a single outcome variable and one or more predictors; testing
statistical hypotheses about the relationship of the predictors to the outcome
variable is of particular interest; adjusting for confounding covariates is crucial;
and model selection and checking of assumptions through analysis of residuals and
other methods are key requirements. Thus, readers should be familiar with basic
concepts of classical hypothesis testing and with principles of regression analysis.
Familiarity with categorical data analysis methods, including contingency tables,
stratified contingency tables, and Poisson and logistic regression, are also important.
However, survival analysis differs from these classical statistical methods in that
censoring plays a central role in nearly all cases, and the theoretical underpinnings of
the subject are far more complex.While I have strived to keep themathematical level
of this book as assessable as possible, many concepts in survival analysis depend
on some understanding of mathematical statistics. Readers at a minimum must
understand key ideas from calculus such as limits and themeaning of derivatives and
integrals; the definition of the hazard function, for example, underlies everything
we will do, and its definition depends on limits. And its connection to the survival
function depends on an integral. Those who are already familiar with basic concepts
of likelihood theory at the level of aMasters program in statistics or biostatistics will
have the easiest time working through this book. For those who are less familiar with
these topics I have endeavored to use the numerical capabilities of R to illustrate
likelihood principles as they arise. Also, as alreadymentioned, the reader is expected
to be familiar with the basics of using the R system, including such concepts as
vectors, matrices, data structures and components, and data frames. He or she should
also be sufficiently familiar with R to carry out basic data analyses and make data
plots, as well as understand how to install in R packages from the main CRAN
(Comprehensive R Archive Network) repository.

1.3 Survival Data and Censoring

A key characteristic of survival data is that the response variable is a non-negative
discrete or continuous random variable, and represents the time from a well-
defined origin to a well-defined event. A second characteristic of survival analysis,
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censoring, arises when the starting or ending events are not precisely observed.
The most common example of this is right censoring, which results when the final
endpoint is only known to exceed a particular value. Formally, if T! is a random
variable representing the time to failure and U is a random variable representing
the time to a censoring event, what we observe is T D min.T!;U/ and a censoring
indicator ı D IŒT! < U!. That is, ı is 0 or 1 according to whether T is a censored
time or an observed failure time. Less commonly one may have left censoring,
where events are known to have occurred before a certain time, or interval censoring,
where the failure time is only known to have occurred within a specified interval of
time. For now we will address the more prevalent right-censoring situation.

Censoring may be classified into three types: Type I, Type II, or random. In
Type I censoring, the censoring times are pre-specified. For example, in an animal
experiment, a cohort of animals may start at a specific time, and all followed until
a pre-specified ending time. Animals which have not experienced the event of
interest before the end of the study are then censored at that time. Another example,
discussed in detail in Example 1.5, is a smoking cessation study, where by design
each subject is followed until relapse (return to smoking) or 180 days, whichever
comes first. Those subjects who did not relapse within the 180 day period were
censored at that time.

Type II censoring occurs when the experimental objects are followed until a pre-
specified fraction have failed. Such a design is rare in biomedical studies, but may
be used in industrial settings, where time to failure of a device is of primary interest.
An example would be one where the study stops after, for instance, 25 out of 100
devices are observed to fail. The remaining 75 devices would then be censored. In
this example, the smallest 25% of the ordered failure times are observed, and the
remainder are censored.

The last general category of censoring is random censoring. Careful attention to
the cause of the censoring is essential in order to avoid biased survival estimates. In
biomedical settings, one cause of random censoring is patient dropout. If the dropout
occurs truly at random, and is unrelated to the disease process, such censoring may
not cause any problems with bias in the analysis. But if patients who are near death
are more likely to drop out than other patients, serious biases may arise. Another
cause of random censoring is competing events. For instance, in Example 1.4, the
primary outcome is time to death from prostate cancer. But when a patient dies of
another cause first, then that patient will be censored, since the time he would have
died of prostate cancer (had he not died first of the other cause) is unknown. The
question of independence of the competing causes is, of course, an important issue,
and will be discussed in Sect. 9.2.

In clinical trials, the most common source of random censoring is administrative
censoring, which results because some patients in a clinical trial have not yet died
at the time the analysis is carried out. This concept is illustrated in the following
example.

mac
Type I, Type II, or random
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Example 1.1. Consider a hypothetical cancer clinical trial where subjects enter the
trial over a certain period of time, known as the accrual period, and are followed
for an additional period of time, known as the follow-up period, to determine their
survival times. That is, for each patient, we would like to observe the time between
when a patient entered the trial and when that patient died. But unless the type of
cancer being studied is quickly fatal, some patients will still be alive at the end of the
follow-up time, and indeed many patients may survive long after this time. For these
patients, the survival times are only partially observed; we know that these patients
survived until the end of follow-up, but we don’t know how much longer they will
survive. Such times are said to be right-censored, and this type of censoring is both
the most common and the most easily accommodated. Other types of censoring, as
we have seen, include left and interval censoring. We will discuss these briefly in
the last chapter.

Figure 1.1 presents data from a hypothetical clinical trial. Here, five patients were
entered over a 2.5-year accrual period which ran from January 1, 2000 until June
30, 2002. This was followed by 4.5 years of additional follow-up time, which lasted
until December 31, 2007. In this example, the data were meant to be analyzed at
this time, but three patients (Patients 1, 3 and 4) were still alive. Also shown in this
example is the ultimate fate of these three patients, but this would not have been
known at the time of analysis. Thus, for these three patients, we have incomplete
information about their survival time. For example, we know that Patient 1 survived
at least 7 years, but as of the end of 2007 it would not have been known how long
the patient would ultimately live.

Fig. 1.1 Clinical trial accrual
and follow-up periods. The
vertical dashed lines indicate
the trial start, end of accrual,
and end of follow-up. The X’s
denote deaths and the open
circles denote censoring
events

Year of entry − calendar time
2000 2002 2004 2006 2008 2010

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

Patient 6

Accrual Follow−up
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Fig. 1.2 Clinical trial
survival data, patient time

Survival time in years − patient time

0 1 2 3 4 5 6 7 8

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

Patient 6

Table 1.1 Survival data Patient Survtime Status

1 7 0
2 6 1
3 6 0
4 5 0
5 2 1
6 4 1

Figure 1.2 presents this data set in terms of patient time, where each patient is
shown as starting at time zero. Here we again see that three of the patients have
complete information; that is, we know when they started the trial and when they
died. The other three patients were right-censored; for these patients, the last follow-
up times (the last times at which the patient is known to be alive) are indicated by
open circles.

The data may be represented in tabular form as shown in Table 1.1. Here, the
variable “Survtime” refers to the time from entry into the trial until death or loss to
follow-up, whichever comes first, and “Status” indicates whether the survival time
represents an event (Status = 1) or is censored (Status = 0).

Administrative censoring has the property that the censoring mechanism is
(ordinarily) independent of the survival mechanism, and such censoring can be
accommodated using the techniques described in the remainder of the book. Right
censoring due to dropout is more problematic. If these patients drop out for reasons
unrelated to the outcome, this form of censoring, like that due to patients remaining
alive at the end of the follow-up period, is said to be non-informative, and can be
directly accommodated using the methods to be discussed in the next few chapters.
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Informative censoring, by contrast, may (for example) result if individuals in a
clinical trial tend to drop out of the study (and become lost to follow-up) for reasons
related to the failure process. This type of censoring can introduce biases into the
analysis that are difficult to adjust for. The methods we discuss will require the
assumption that censoring is non-informative.

The goals of survival analysis are to estimate the survival distribution, to compare
two or more survival distributions, or (more generally) to assess the effects of a
number of factors on survival. The techniques bear some resemblance to regression
analysis, with the important distinctions that the outcome variable (time) is always
positive and often censored.

1.4 Some Examples of Survival Data Sets

Following are a few examples of studies using survival analysis which we will refer
to throughout the text. The data sets may be obtained by installing the text’s package
“asaur” from the main CRAN repository. Data for these examples is presented in a
number of different formats, reflecting the formats that a data analyst may see in
practice. For example, most data sets present survival time in terms of time from
the origin (typically entry into a trial). One contains specific dates (date of entry
into a trial and date of death) from which we compute the survival time. All contain
additional variables, such as censoring variables, which indicate that partial time
information on some subjects is available. Most also contain treatment indicators
and other covariate information.

Example 1.2. Xelox in patients with advanced gastric cancer

This is a Phase II (single sample) clinical trial of Xeloda and oxaliplatin (XELOX)
chemotherapy given before surgery to 48 advanced gastric cancer patients with para-
aortic lymph node metastasis (Wang et al. [74]). An important survival outcome of
interest is progression-free survival, which is the time from entry into the clinical
trial until progression or death, whichever comes first. The data, which have been
extracted from the paper, are in the data set “gastricXelox” in the “asaur” package;
a sample of the observations (for patients 23 through 27) are as follows:

> library (asaur)
> gastricXelox[23:27,]

timeWeeks delta
23 42 1
24 43 1
25 43 0
26 46 1
27 48 0

The first column is the patient (row) number. The second is a list of survival
times, rounded to the nearest week, and the third is “delta”, which is the censoring
indicator. For example, for patient number 23, the time is 42 and delta is 1, indicating
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that the observed endpoint (progression or death) had been observed 42 weeks after
entry into the trial. For patient number 25, the time is 43 and delta is 0, indicating
that the patient was alive at 43 weeks after entry and no progression had been
observed. We will discuss this data set further in Chap. 3.

Example 1.3. Pancreatic cancer in patients with locally advanced or metastatic
disease

This is also a single sample Phase II study of a chemotherapeutic compound, and
the main purpose was to assess overall survival and also “progression-free survival”,
which is defined as the time from entry into the trial until disease progression
or death, whichever comes first. A secondary interest in the study is to compare
the prognosis of patients with locally advanced disease as compared to metastatic
disease. The results were published in Moss et al. [51] The data are available in the
data set “pancreatic” in the “asaur” package. Here are the first few observations:

> head(pancreatic)
stage onstudy progression death

1 M 12/16/2005 2/2/2006 10/19/2006
2 M 1/6/2006 2/26/2006 4/19/2006
3 LA 2/3/2006 8/2/2006 1/19/2007
4 M 3/30/2006 . 5/11/2006
5 LA 4/27/2006 3/11/2007 5/29/2007
6 M 5/7/2006 6/25/2006 10/11/2006

For example, Patient #3, a patient with locally advanced disease (stage = “LA”),
entered the study on February 3, 2006. That person was found to have progressive
disease on August 2 of that year, and died on January 19 of the following year.
The progression-free survival for that patient is the difference of the progres-
sion date and the on-study date. Patient #4, a patient with metastatic disease
(stage = “M”), entered on March 30 2006 and died on May 11 of that year, with
no recorded date of progression. The progression-free survival time for that patients
is thus the difference of the death date and the on-study date. For both patients, the
overall survival is the difference between the date of death and the on-study date. In
this study there was no censoring, since none of these seriously ill patients survived
for very long. In Chap. 3 we will see how to compare the survival of the two groups
of patients.

Example 1.4. Survival prospects of prostate cancer patients with high-risk disease

In this data set there are two outcomes of interest, death from prostate cancer and
death from other causes, so we have what is called a competing risks survival
analysis problem. In this example, we have simulated data from 14,294 prostate
cancer patients based on detailed competing risks analyses published by Lu-Yao
et al. [46]. For each patient we have grade (poorly or moderately differentiated), age
of diagnosis (66-70, 71-75, 76-80, and 80+), cancer stage ( T1c if screen-diagnosed
using a prostate-specific antigen blood test, T1ab if clinically diagnosed without
screening, or T2 if palpable at diagnosis), survival time (days from diagnosis to
death or date last seen), and an indicator (“status”) for whether the patient died
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of prostate cancer (status = 1), died of some other cause (status = 2), or was
still alive at the date last seen (status = 0). The simulated data set matches the
original in the number of patients in each of the two grades, three stages, and four
age groups (24 categories). For each of the 24 categories, Lu-Yao et al. [46] also
presented competing risks survival plots for death from prostate cancer and from
other causes, and these 24 plots were used to simulate the data presented here. Thus,
the simulated data preserve many of the key characteristics of the original. This data
set, “prostateSurvival”, is available in the “asaur” package. Here is a list of the data
for a few patients (88–95):

> prostateSurvival[88:95,]
grade stage ageGroup survTime status

88 poor T2 75-79 33 0
89 mode T2 75-79 6 0
90 mode T1c 75-79 15 2
91 mode T2 70-74 6 2
92 mode T1ab 80+ 93 1
93 poor T2 80+ 60 2
94 mode T2 80+ 1 0
95 mode T1ab 75-79 34 0

When analyzing such a large data set, we will typically apply statistical models
to selected subsets rather than to the entire data set, for two distinct reasons.
First, patients of different ages or disease types may have vastly different disease
trajectories, and depend on measured covariates in quite different ways. Thus,
attempting to construct a single model for the entire data set is likely to involve
complicated interaction terms, and interpreting these can be rather difficult. Second,
the types of questions one is interested in asking can be very different for different
classes of patients. For example, for the youngermen in this data set (say, 65 through
74), we may be particularly interested in teasing out the projected time to death
from prostate cancer as compared to death from other causes, a topic we address
Sect. 9.2 (competing risks). For older patients (say 85 and older), one can also look
at competing risks if desired, and we do this in Sect. 9.2. But practically speaking,
the main interest may be in overall mortality among these men, an issue we address
in Sect. 12.1.

Example 1.5. Comparison of medical therapies to aid smokers to quit

The purpose of this study (Steinberg et al. [63]) was to evaluate extended duration
of a triple-medication combination versus therapy with the nicotine patch alone in
smokers with medical illnesses. Patients with a history of smoking were randomly
assigned to the triple-combination or patch therapy and followed for up to six
months. The primary outcome variable was time from randomization until relapse
(return to smoking); individuals who remained non-smokers for six months were
censored. The data set, “pharmacoSmoking”, is available in the “asaur” package.
Here is a listing of a few cases and variables:
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> pharmacoSmoking[1:6, 2:8]
ttr relapse grp age gender race employment

1 182 0 patchOnly 36 Male white ft
2 14 1 patchOnly 41 Male white other
3 5 1 combination 25 Female white other
4 16 1 combination 54 Male white ft
5 0 1 combination 45 Male white other
6 182 0 combination 43 Male hispanic ft

The variable “ttr” is the number of days without smoking (“time to relapse”), and
“relapse=1” indicates that the subject started smoking again at the given time. The
variable “grp” is the treatment indicator, and “employment” can take the values “ft”
(full time), “pt” (part time), or “other”. The primary objectives were to compare the
two treatment therapies with regard to time to relapse, and to identify other factors
related to this outcome.

Example 1.6. Prediction of survival of hepatocellular carcinoma patients using
biomarkers

This study (Li et al. [42, 43]) focused on using expression of a chemokind
known as CXCL17, and other clinical and biomarker factors, to predict overall and
recurrence-free survival. This example contains data on 227 patients, each with a
wide range of clinical and biomarker values. The “hepatoCellular” data are publicly
available in the Dryad online data repository [43] as well as in the “asaur” R package
that accompanies this text. Here, for illustration, is a small selection of cases and
covariates.
> hepatoCellular[c(1, 2, 3, 65, 71),c(2, 3, 16:20, 24, 47)]

Age Gender OS Death RFS Recurrence CXCL17T CD4N Ki67
1 57 0 83 0 13 1 113.94724 0 6.04350
2 58 1 81 0 81 0 54.07154 NA NA
3 65 1 79 0 79 0 22.18883 NA NA
65 38 1 5 1 5 1 106.78169 0 44.24411
71 57 1 11 1 11 1 98.49680 0 99.59232

The survival outcomes are “OS” (overall survival) and “RFS” (recurrence-free sur-
vival), and the corresponding censoring indicators are “Death” and “Recurrence”.
The full data set has 48 columns. In columns 23 to 48 there are many patients with
missing values, with only 117 patients having complete data.

1.5 Additional Notes

1. Another type of incomplete observation with survival data is truncation, a result
of length-biased sampling. We discuss left truncation in Sect. 3.5. Right trunca-
tion is less common and more difficult to model. See Klein and Moeschberger
[36] for further discussion.

2. The Healthcare Delivery Research Program of the Division of Cancer Control
and Population Sciences, National Cancer Institute, USA maintains the SEER-
Medicare Linked Database, which provided the data used in Lu-Yao et al. [46].
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This NCI-based research program makes this data available for research only,
and will not permit it to be distributed for educational purposes. Thus it cannot be
used in this book. Fortunately, however, the Lu-Yao publication contains detailed
cause-specific survival curves for patients cross-classified by four age groups,
three stage categories, and two Gleason stages, as well as precise counts of the
numbers of patients in each category. This information was used to simulate a
survival data set that maintains many of the characteristics of the original SEER-
Medicare data used in the paper. This simulated data set, “prostateSurvival”, is
what is used in this book for instructional purposes.

3. Numerous excellent illustrative survival analysis data sets are freely available
to all. The standard “survival” library that is distributed with the R system
has a number of survival analysis data sets. Also, the “KMsurv” R package
contains a rich additional set of data sets that were discussed in Klein and
Moeschberger [36]. The “asaur” R package contains data sets used in the current
text.

Exercises

1.1. Consider a simple example of five cancer patients who enter a clinical trial as
illustrated in the following diagram:

         Year of entry − calendar time

1990 1991 1992 1993 1994 1995

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

Accrual Follow−up

Re-write these survival times in terms of patient time, and create a simple data
set listing the survival time and censoring indicator for each patient. How many
patients died? How many person-years are there in this trial? What is the death rate
per person-year?

1.2. For the “gastricXelox” data set, use R to determine how many patients had the
event (death or progression), the number of person-weeks of follow-up time, and
the event rate per person-week.



Chapter 2
Basic Principles of Survival Analysis

2.1 The Hazard and Survival Functions

Survival analysis methods depend on the survival distribution, and two key ways of
specifying it are the survival function and the hazard function. The survival function
defines the probability of surviving up to a point t. Formally,

S.t/ D pr.T > t/; 0 < t <1

This function takes the value 1 at time 0, decreases (or remains constant) over time,
and of course never drops below 0. As defined here it is right continuous.1

The survival function is often defined in terms of the hazard function, which
is the instantaneous failure rate. It is the probability that, given that a subject has
survived up to time t, he or she fails in the next small interval of time, divided by
the length of that interval. Formally, this may be expressed as

h.t/ D lim
ı!0

pr.t < T < tC ıjT > t/
ı

This function is also known as the intensity function or the force of mortality.
The hazard and survival functions are two ways of specifying a survival

distribution. To illustrate the connection between the two, consider first a case where
the hazard is initially very high. Such a hazard might be appropriate to describe the
lifetimes of animals with high mortality early in life. Figure 2.1 illustrates such a
hazard function (a) and the corresponding survival function (b). Next consider the

1In some texts the survival function is defined as S.t/ D Pr.T " t/, resulting in a left-continuous
survival function. This issue arises with step function survival curves, e.g. the Kaplan-Meier
estimate discussed in the next chapter.
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Fig. 2.1 Hazard and survival functions with high initial hazard (a and b) and low initial hazard
(c and d)

opposite, where the hazard is initially low, and increases later in life. Such a hazard
would describe organisms with low initial hazard of death. This is illustrated in
Fig. 2.1 (c) and the corresponding survival in (d).

Demographic data provide another illustration of hazard and survival functions,
as shown in the next example, where we see elements of both high early and high
late hazard functions.

Example 2.1. The daily hazard rates of men and women by age in each calendar
year from 1940 to 2004 are contained in the three-dimensional array “survexp.us”,
which is part of the R package “survival”. These hazard rates were derived from US
life tables using methodology described in Therneau and Offord [70]. Figure 2.2
shows the distribution of lifetimes in the United States in 2004 for males and
females. The hazard plot, here plotted on a log scale, shows several features of a
human lifespan. First, the initial days and weeks of life are particularly dangerous,
and the risk recedes rapidly after the first month of life. The hazard increases
during the teen years, then levels off, until it starts a steady increase in midlife.
Males exhibit a higher mortality than females, as is well-known. The corresponding
survival function is also shown. This example also demonstrates that the hazard
function may show details of changes in risk that may not be apparent in the survival
curves.

To get the hazards in R, we use the following R code, which is run after a
“library(survival)” command. The “#” character is called a comment character; text
following this character is explanatory, and not executed.
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Fig. 2.2 Hazard and survival functions for US males and females in 2004. The hazard function is
plotted on a log scale

> tm <- c(0, # birth
1/365, # first day of life
7/365, # seventh day of life
28/365, # fourth week of life
1:110) # subsequent years

> hazMale <- survexp.us[,"male","2004"] # 2004 males
> hazFemale <- survexp.us[,"female","2004"] # 2004 females

The hazard plot in Fig. 2.2 is obtained by plotting “hazMale” and “hazFemale”
versus “tm”. In Sect. 2.5 we will show how to derive the lifetime survival
distributions for males and females from the corresponding hazard functions.

2.2 Other Representations of a Survival Distribution

In addition to the survival and hazard functions, there are several other ways to
define a survival distribution. The cumulative distribution function (CDF), which is
commonly used outside of survival analysis, is given by
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F.t/ D pr.T ! t/; 0 < t <1

This is the complement of the survival function and, like the survival function, it
is right continuous. In survival analysis, this function is known as the cumulative
risk function (not to be confused with the cumulative hazard defined below). The
probability density function (PDF),

f .t/ D " d
dt
S.t/ D d

dt
F.t/

is the rate of change of the CDF, or minus the rate of change of the survival function.
The hazard function is related to the PDF and survival functions by

h.t/ D f .t/
S.t/

That is, the hazard at time t is the probability that an event occurs in the
neighborhood of time t divided by the probability that the subject is alive at time t.
The cumulative hazard function is defined as the area under the hazard function up
to time t, that is,

H.t/ D
tˆ

0

h.u/du

The survival function may be defined in terms of the hazard function by

S.t/ D exp

0

@"
tˆ

0

h.u/du

1

A D exp ."H.t// (2.2.1)

It is this relationship that allows us to compute the survival function corresponding
to a hazard function, as in Figs. 2.1 and 2.2.

2.3 Mean and Median Survival Time

The mean survival is the expected value of the survival time,

" D E.T/ D
1̂

0

tf .t/dt
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which, using standard integration by parts, and using the fact that f .t/ D "d=dtS.t/,
may be written as2

" D
1̂

0

S.t/dt: (2.3.1)

The mean survival time is only defined if S.1/ D 0, that is, if all subjects eventually
fail. This might not be the case if, for example, the survival outcome is time to
cancer recurrence, and some fraction c of the subjects are cured and thus have no
recurrence. In that case, S.1/ D c, and the area under the survival curve is infinite.
In theory the mean survival also cannot be computedwith the Kaplan-Meier survival
curve when the curve does not reach zero, an issue we will discuss in the next
chapter. If a mean survival time is required in this situation, a work-around is to
specify a maximum possible survival time, so that the integral becomes finite.

The median survival time is defined as the time t such that S.t/ D 1=2. If the
survival curve is not continuous at 1=2 (if the survival function is a step function,
for example), then the median is taken to be the smallest t such that S.t/ ! 1=2.
If the survival curve does not drop below 1=2 during the observation period, then of
course the median survival is undefined.

2.4 Parametric Survival Distributions

Several survival distributions are available for modeling survival data. The exponen-
tial distribution, the simplest survival distribution, has a constant hazard, h.t/ D #.
The cumulative hazard function may be easily derived using the relationships in the
previous section:

H.t/ D
tˆ

0

h.u/du D
tˆ

0

#du D #tjt0 D #t

Thus, the cumulative hazard at time t is just the area #t of the shaded rectangle in
Fig. 2.3.

The survival function is

S.t/ D e#H.t/ D e##t

and the probability density function is given by

f .t/ D h.t/S.t/ D #e##t:

2To establish this formula, we also need the result that lim
t!1

.t $ S.t// D 0. This is easy to show for

the exponential distribution, but it is non-trivial to prove in general.
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Fig. 2.3 Exponential hazard,
with shaded area indicating
the cumulative hazard at
time t
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The mean of an exponential random variable is given by (using Eq. 2.3.1)

E.T/ D
ˆ 1

0

S.t/ dt D
ˆ 1

0

e##t dt D 1=#:

The median is the value of t that satisfies 0:5 D e##t, so that tmed D log.2/=#.
(In this text, as in the R language, “log” refers to the natural logarithm.)

The exponential distribution is easy to work with, but the constant hazard
assumption is not often appropriate for describing the lifetimes of humans or
animals. TheWeibull distribution, which offers more flexibility in modeling survival
data, has hazard function

h.t/ D ˛#.#t/˛#1 D ˛#˛t˛#1:

The cumulative hazard and survival functions are given by, respectively,

H.t/ D .#t/˛

and

S.t/ D e#.#t/˛ :

Figure 2.4 shows the shape of the hazard for several parameter choices. The
exponential distribution is a special case with ˛ D 1. It is monotone increasing
for ˛ > 1 and monotone decreasing for ˛ < 1.

The mean and median of the Weibull distribution are, respectively,

E.T/ D $ .1C 1=˛/

#
(2.4.1)

and

tmed D
Œlog.2/!1=˛

#
: (2.4.2)
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Fig. 2.4 Weibull hazard
functions
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For integers, the gamma function is given by $ .n/ D .n " 1/Š. For the special case
˛ D 1, of course, the mean and median are identical to those of the exponential
distribution. For non-integers, it must be evaluated numerically; in R, this may be
done using the “gamma” function.

In R the functions “dweibull” and “pweibull” compute the p.d.f. and c.d.f.,
respectively, of the Weibull distribution. These functions use the arguments “shape”
and “scale” to represent the parameters ˛ and 1=#, respectively. To obtain the
survival function, we can specify “lower.tail = F” as an option in the “pweibull”
function. For example, we can plot the Weibull survival function with ˛ D 1 and
# D 0:03 by first defining a function “weibSurv” with these parameters and then
using the “curve” function to plot the curve as follows (figure not shown):

weibSurv <- function(t, shape, scale) pweibull(t, shape=shape,
scale=scale, lower.tail=F)

curve(weibSurv(x, shape=1.5, scale=1/0.03), from=0, to=80,
ylim=c(0,1), ylab=’Survival probability’, xlab=’Time’)

To plot the hazard function with this shape and scale, as shown by the red curve
in Fig. 2.4, we can use the following code to first define the hazard function as the
p.d.f. divided by the survival function,

weibHaz <- function(x, shape, scale) dweibull(x, shape=shape,
scale=scale)/pweibull(x, shape=shape, scale=scale,

lower.tail=F)
curve(weibHaz(x, shape=1.5, scale=1/0.03), from=0, to=80,

ylab=’Hazard’, xlab=’Time’, col="red")

The other two curves may be obtained using “shape = 1” and “shape = 0.75”
when calling the “curve” function. To place the additional curves on the plot, add
“add = T” as an option to the “curve” function.
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We may generate random variables from the exponential or Weibull distribution
using the functions “rexp” and “rweib”. For example, we may generate 1000
Weibull random variables with shape 1.5 and scale 1/0.03, and compute their mean
and median, as follows:

> tt.weib <- rweibull(1000, shape=1.5, scale=1/0.03)
> mean(tt.weib)
[1] 31.35497
> median(tt.weib)
[1] 26.84281

The theoretical mean and median, using Eqs. 2.4.1 and 2.4.2, are as follows:

> gamma(1 + 1/1.5)/0.03 # mean
[1] 30.09151

> (log(2)^(1/1.5))/0.03 # median
[1] 26.10733

The empirical mean andmedian are close to their theoretical values, as they must be.
The gamma distribution (not to be confused with the gamma function) provides

yet another choice for survival modeling. The probability density function is
given by

f .t/ D #ˇtˇ#1 exp."#t/
$ .ˇ/

While the hazard and survival functions cannot be written in closed form, they
can be computed using the formulas in the previous section. Figure 2.5 shows
several examples of hazard functions. It is monotone increasing for ˇ > 1 and
monotone decreasing for ˇ < 1. When ˇ D 1, the gamma distribution reduces to
an exponential distribution.

To plot the gamma hazard function for ˇ D 1:5 and # D 0:03, we can use the
following code:

gammaHaz <- {function(x, shape, scale) dgamma(x, shape=shape,
scale=scale)/pgamma(x, shape=shape, scale=scale, lower.tail=F)}

curve(gammaHaz(x, shape=1.5, scale=1/0.03), from=0, to=80,
ylab=’Hazard’, xlab=’Time’, col="red")

This produces the red curve in Fig. 2.5. The other two curves may be obtained
using “shape = 1” and “shape = 0.75”, along with the “add = T” option. Other
parametric families of survival distributions include the log-normal (see Exercise 2.6
for this one), log-logistic, Pareto, and many more. See for example Klein and
Moeschberger [36] and Cox and Oakes [11] for details.
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Fig. 2.5 Gamma hazard
functions
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2.5 Computing the Survival Function
from the Hazard Function

If we know the hazard function of a survival random variable, we may derive the
survival function using Eq. 2.2.1. For some parametric families, this is simple to do.
But if the hazard function is more complicated, we need to use numerical methods
to evaluate the integral. For example, consider again the human hazard functions
in Fig. 2.2. To get the corresponding survival plots, we first compute a vector
of differences, “tm.diff”, then we find the cumulative hazard functions using the
“cumsum” function, and finally we use the relationship of the survival function to
the cumulative hazard to get “survMale” and “survFemale”. The survival functions
in Fig. 2.2 result from plotting these survival functions versus “tm”. In the following
code, “tm.diff” is the width of each rectangle, and “survMale” and “survFemale”
represent the survival curves for males and females, respectively.

> tm.diff <- diff(tm)
> survMale <- exp(-cumsum(hazMale*tm.diff)*365.24)
> survFemale <- exp(-cumsum(hazFemale*tm.diff)*365.24)

The diagram in Fig. 2.6 illustrates the computation of the cumulative hazard at
time t D 1:5, which is the shaded area.

This representation of the hazard function is an example of a piecewise exponen-
tial distribution, since the hazard is constant on specified time intervals.

Now that we have the survival distributions for men and women, we can compute
the mean age of death for men and women in 2004 in the US, which is the area under
the respective survival curve in Fig. 2.2. In the following code, “tm.diff” is the width
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Fig. 2.6 Illustration of the calculation of the cumulative hazard for males in 2004. The hazard
function stored in “survexp.us” is actually a step function evaluated at times 1 day, 1 week, 1,
month, 1 year, and every year thereafter. Shown here are only the first two years, and the shaded
area represents the cumulative hazard at 1.5 years

of each rectangle and “survMale” and “survFemale” are the heights of the rectangles
for men and women, respectively. The sum of the areas of the rectangles gives the
value of the integral:

> sum(survMale*tm.diff) # mean age of male death in 2004
[1] 73.8084
> sum(survFemale*tm.diff) # mean age of female death in 2004
[1] 78.90526

2.6 A Brief Introduction to Maximum Likelihood Estimation

The previous sections show us how to compute probabilities for a specific prob-
ability distribution (e.g., exponential, Weibull, gamma) for specified values of the
parameters. For example, if we know that a random variable T has an exponential
distribution with parameter # D 0:03, we can directly compute the probability that
T exceeds a particular value. But suppose that we have a series of observations
t1; t2; : : : ; tnfrom an exponential distribution with unknown parameter #. How can
we estimate #? The theory of maximum likelihood estimation provides a mathe-
matical framework for doing this. While a comprehensive discussion of likelihood
theory is beyond the scope of this book, we may get an overview of the technique
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by considering a simple example using the exponential distribution. We construct a
likelihood by taking a product of terms from the exponential distribution, one for
each observation. If there is no censoring, the likelihood function takes the general
form

L.#I t1; t2; : : : ; tn/ D f .t1;#/ # f .t2;#/ # # # # # f .tn;#/ D
nY

iD1
f .ti;#/:

If some observations are censored, we have to make an adjustment to this expres-
sion. For an observation of an observed death, we put in the p.d.f. as above. But
for a right-censored observation, we put in the survival function, indicating that
observation is known only to exceed a particular value. The likelihood in general
then takes the form

L.#I t1; t2; : : : ; tn/ D
nY

iD1
f .ti;#/ıi S.ti;#/1#ıi D

nY

iD1
h.ti;#/ıi # S.ti;#/: (2.6.1)

This expression means that when ti is an observed death, the censoring indicator
is ıi D 1, and we enter a p.d.f. factor. When ti is a censored observation, we have
ıi D 0 we enter a survival factor. Alternatively, we may enter a hazard factor for
each censored observation and a survival factor for every observation, censored or
not.

For the exponential distribution the likelihood, we substitute the expressions for
the p.d.f. and survival distributions, and simplify as follows:

L.#/ D
nY

iD1

!
#e#ti="

"ıi!e##ti"1#ıi D #de##V

Alternatively, we may substitute a hazard factor # for the censored observations and
a survival factor e##ti for all observations. This of course leads to the same form for

the likelihood function. We have the total number of deaths, d D
nP

iD1
ıi and the total

amount of time of patients on the study, V D
nP

iD1
ti . This latter term is known in

epidemiology as person-years (or person-months or person-days, according to the
time unit). We need to find the value of # that maximizes this function, and that
value is known as the maximum likelihood estimate. Now, this product formula is
difficult to work with, so we use a logarithmic transformation to convert it into a
sum, known as the log-likelihood,

l.#/ D d log# " #V:
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Since the log transformation is monotonic, the value of # that maximizes the log-
likelihood also maximizes the original likelihood function.We use standard calculus
to find the first derivative, also called the score function,

l0.#/ D d
#

" V

which we set equal to zero to obtain the maximum likelihood estimate, O# D d=V .
That is, our estimate is the number of deaths divided by the number of person-years.

Next, we compute the second derivative of the log-likelihood,

l00.#/ D " d
#2

D "I.#/

which, when we switch the sign, is known as the information. This is important
for two reasons. First, since the information is positive (the second derivative is
negative), the likelihood function is concave down, which shows that we have
indeed found a maximum. Second, using standard mathematical statistics theory,
the inverse of the information is approximately the variance of the m.l.e.,

var
#
O#
$

$ I#1 .#/ D #2=d

Now we substitute O# for # to obtain the observed information I. O#/, and from there
we get an estimate of the variance of the parameter:

cvar
#
O#
$

$ I#1
#
O#
$
D O#2=d D d=V2

We may use this formula to carry out hypothesis tests or find a confidence interval
for #.

Consider for example the six observations in Table 1.1, and suppose that they
are derived from an exponential distribution with unknown parameter #. There
are three deaths, which gives us d D 3. Also, the total patient time on study is
V D 7C6C6C5C2C4 D 30. The log-likelihood function is l.#/ D 3 log#"30#,
and the maximum likelihood estimate is given by O# D 3=30 D 0:1 (Fig. 2.7).

Maximum likelihood methods may be applied to a wide range of statistical
problems, using other distributions and more than one parameter, and (under
technical conditions that are often satisfied), the m.l.e. is asymptotically normal with
a mean that approaches the true mean of the parameter and a variance (or, when there
are multiple parameters, a covariance matrix) that is the inverse of the information,
or minus the second derivative of the log-likelihood theory. The generality of the
method makes it a central part of statistical theory and practice.
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Fig. 2.7 Log-likelihood function for data from Table 1.1, showing the maximum likelihood
estimate, and the horizontal tangent at the maximum

2.7 Additional Notes

1. Methods for the analysis if human life tables pre-date modern survival analysis as
described here. See Preston, Heuveline, and Guillot [55] for a thorough modern
exposition of the methods used in demography.

2. Many sources, including R, express the Weibull distribution using ˇ D 1=#.
Then ˛ is known as the “shape” parameter and ˇ as the “scale” parameter.
Still others, e.g. Klein and Moeschberger [36], express this distribution in terms
of #! D #˛ , so that h.t/ D #!˛t˛#1. The terms “shape” and “scale” refer
to the shape and scale of the probability density function; these terms are not
particularly relevant to survival analysis, where the emphasis on the hazard and
survival functions. In fact, in later chapters, the term “scale” will take on a
completely different meaning when we use the Weibull distribution for modeling
survival data with covariates. Despite the potential confusion over two meanings
for “scale”, we must continue use the “shape” and “scale” terminology as defined
here since these are the names of the parameters used by the RWeibull functions.

3. Thorough discussions of maximum likelihood methods in survival analysis may
be found in the classical references Kalbfleisch and Prentice [34] and Cox and
Oakes [11].
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Exercises

2.1. Using the “survexp.us” data described in Example 2.2, plot the hazard func-
tions for men and women in 1940 and 2000. Comment on the change in mortality
rates in children.

2.2. Find the mean age of death separately for men and women for 1940 and 2000.

2.3. The data set “survexp.usr” in the “survival” package is a four dimensional array
of hazards in format similar to the “survexp.us” data set, with race (black or white)
in the added dimension. Plot the hazard functions for black males and white males
for 1940 and 2000.

2.4. Consider the survival data in Exercise 1.1. Assuming that these observations
are from an exponential distribution, find O# and an estimate of var. O#/.
2.5. Consider a survival distribution with constant hazard # D 0:07 from t D 0
until t D 5 and then hazard # D 0:14 for t > 5. (This is known as a piecewise
constant hazard.) Plot this hazard function and the corresponding survival function
for 0 < t < 10. What is the median survival time?

2.6. Another parametric survival distribution is the log-normal distribution. Use the
density and cumulative distribution R functions “dlnorm” and “plnorm” to compute
and plot the lognormal hazard functions with the parameter “meanlog” taking the
values 0, 1, and 2, and with “sdlog” fixed at 0.25. Describe the risk profile a disease
would have if it followed one of these hazard functions.



Chapter 3
Nonparametric Survival Curve Estimation

3.1 Nonparametric Estimation of the Survival Function

We have seen that there are a wide variety of hazard function shapes to choose
from if one models survival data using a parametric model. But which parametric
model should one use for a particular application? When modeling human or
animal survival, it is hard to know what parametric family to choose, and often
none of the available families has sufficient flexibility to model the actual shape of
the distribution. Thus, in medical and health applications, nonparametric methods,
which have the flexibility to account for the vagaries of the survival of living
things, have considerable advantages. In this chapter we will discuss non-parametric
estimators of the survival function. The most widely used of these is the product-
limit estimator, also known as the Kaplan-Meier estimator. This estimator, first
proposed by Kaplan and Meier [35], is the product over the failure times of the
conditional probabilities of surviving to the next failure time. Formally, it is given by

OS.t/ D
Y

ti%t

.1 " Oqi/ D
Y

ti%t

%
1 " di

ni

&

where ni is the number of subjects at risk at time ti, and di is the number of
individuals who fail at that time. The example data in Table 1.1 may be used to
illustrate the construction of the Kaplan-Meier estimate, as shown in Table 3.1.

© Springer International Publishing Switzerland 2016
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Table 3.1 Kaplan-Meier
estimate

ti ni di qi 1# qi Si D
Q
.1# qi/

2 6 1 0.167 0.833 0.846
4 5 1 0.200 0.800 0.693
6 3 1 0.333 0.667 0.497

Fig. 3.1 Right-continuous
Kaplan-Meier survival
function estimate
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The columns represent, respectively, the failure time ti, the number ni at risk at
that time, the number di who fail at that time, the failure probability qi D di=ni,
the conditional survival probability 1" qi, and the cumulative product, which is the
estimate of the survival probability. For example, the probability 0.667 of being
alive at time ti D 4 is the probability 0.833 of being alive at time ti D 2 times
the probability 0.800 of being alive at time ti D 4 given that patients is alive at the
previous time, and so on.

Figure 3.1 shows the Kaplan-Meier estimate of the survivor function using these
data. This function is a non-increasing step function, and the open and closed circles
explicitly show the right-continuity. For example, S.4/ D 0:667, while S.3:99/ D
0:833. In practice, the Kaplan-Meier function is plotted as a step function, with the
indicators of right-continuity not shown. The median survival time is at t D 6, which
is the smallest time t such that S.t/ ! 0:5, as discussed in Sect. 2.4.
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To obtain confidence limits for the product-limit estimator, we first use what is
known as the “delta method”1 to obtain the variance of log. OS.t//,

var
#
log OS.tk/

$
D
X

ti%t

var .log.1 " Oqi// $
X

ti%t

dj
nj.nj " dj/

(3.1.1)

To get the variance of OS.t/ itself, we use the delta method again to obtain

var
#
OS.t/

$
$
h
OS.t/

i2X

ti%t

di
ni.ni " di/

(3.1.2)

Unfortunately, confidence intervals computed based on this variance may extend
above one or below zero. While one could truncate them at one and zero, a more
satisfying approach is to find confidence intervals for the complementary log-log
transformation of OS.t/ as follows,

var
#
log

h
" log OS.t/

i$
$ 1
h
log OS.t/

i2
X

ti%t

di
ni.ni " di/

(3.1.3)

To obtain estimates of the Kaplan-Meier estimator in R for the data in Table 1.1,
we first load the “survival” library, and then enter the data. Note that the “Surv”
function produces a special structure for censored survival data.

> library(survival)
> tt <- c(7,6,6,5,2,4)
> cens <- c(0,1,0,0,1,1)
> Surv(tt, cens)
[1] 7+ 6 6+ 5+ 2 4

For the estimation itself we use the “survfit” function,

> result.km <- survfit(Surv(tt, cens) ~ 1, conf.type="log-log")

To compute confidence intervals based on our preferred method, the complementary
log-log transformation,we have to explicitly specify that. The results of the “survfit”
procedure are placed into a data structure which we have named “result.km”. To see
a few basic results, including the median survival and 95% confidence intervals,
just type the structure name,

1The delta method allows one to approximate the variance of a continuous transformation g.$/ of
a random variable. Specifically, if a random variable X has mean " and variance &2, then g.X/

will have approximate mean g."/ and approximate variance &2 $ !g0
."/

"2
for a sufficiently large

sample size. Refer to any textbook of mathematical statistics for a more precise formulation of this
principle. In the context of the Kaplan Meier survival curve estimate, see Klein and Moeschberger
[36] for further details.
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> result.km

records n.max n.start events median 0.95LCL 0.95UCL
6 6 6 3 6 2 NA

This prints out the number of “records” (here six patients), the number of patients
(n.max and n.start), the number of events (three deaths), the median survival time
(6 years), and a 95% confidence interval for the median. Note that the upper 95%
confidence limit is undefined, indicated by a missing value “NA”. To see the full
Kaplan-Meier estimate, and plot it, we use the “summary” and “plot” functions:

> summary(result.km)

time n.risk n.event survival std.err lower 95% CI upper 95% CI
2 6 1 0.833 0.152 0.2731 0.975
4 5 1 0.667 0.192 0.1946 0.904
6 3 1 0.444 0.222 0.0662 0.785

> plot(result.km)

This lists the distinct failure times (2, 4, and 6 years), the number at risk at each
time interval, and the number of events at each failure time. Also given are the 95%
confidence intervals for the survival probabilities. The survival function estimate is
plotted in Fig. 3.2. This is the same figure as in Fig. 3.1 but without the continuity
notation.
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Fig. 3.2 Kaplan-Maier survival curve estimate with 95% confidence intervals
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Table 3.2 Nelson-Altschuler
estimate of the survival
function

ti ni di qi Hi D
P

qi OSi D exp.#Hi/

2 6 1 0.167 0.167 0.846
4 5 1 0.200 0.367 0.693
6 3 1 0.333 0.700 0.497

An alternative estimator of the survival function is known as the Nelson-
Altschuler estimator.2 It is based on the relationship of the survival function to the
hazard function. An estimate of the cumulative hazard function is the sum of the
estimated hazards up to a time ti:

H.t/ D
X

ti%t

di
ni

(3.1.4)

and the survival function estimate is simply

S.t/ D e#H.t/:

We may illustrate this by again referring to the data in Table 1.1 of Example 1.1;
the calculations are in Table 3.2.

In R, the Nelson-Altschuler estimate may be obtained using the “survfit” function
with the option “type = ‘fh’ “, the letters “fh” being taken from the initials of
Fleming and Harrington:

> r e s u l t . fh <# s u r v f i t ( Surv ( t t , c ens ) ~ 1 , con f . t y p e =" log#l og " ,
+ t yp e =" fh " )
> summary ( r e s u l t . fh )

t ime n . r i s k n . e v en t s u r v i v a l s t d . e r r l ower 95% CI uppe r 95% CI
2 6 1 0 . 846 0 . 155 0 . 2401 0 . 981
4 5 1 0 . 693 0 . 200 0 . 1799 0 . 925
6 3 1 0 . 497 0 . 248 0 . 0585 0 . 841

We now consider data from an actual clinical trial. The data set “gastricXelox”
is a Phase II (single sample) clinical trial of the chemotherapeutic agent Xelox
administered to patients with advanced gastric cancer prior to surgery (Wang
et al. [74]). The primary outcome of interest is “progression-free survival.” This
quantity is defined as the time from entry into a clinical trial until progression or
death, whichever comes first. The survival data set was extracted from the paper,
and the survival times rounded to the nearest week. The product-limit estimator
may be estimated and plotted as follows, after converting the time scale from weeks
to months:

2Other names associated with this estimator are Aalen, Fleming, and Harrington.
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Fig. 3.3 Progression-free survival of gastric cancer patients treated with Xelox

> timeMonths <- gastricXelox$timeWeeks*7/30.25
> delta <- gastricXelox$delta
> result.km <- survfit(Surv(timeMonths, delta) ~ 1,
+ conf.type="log-log")
> plot(result.km, conf.int=T, mark="|", xlab="Time in months",
+ ylab="Survival probability")
> title("Progression-free Survival in Gastric Cancer Patients")

Figure 3.3 shows the survival plot.

3.2 Finding the Median Survival and a Confidence Interval
for the Median

Formally, the median survival time may be defined as Otmed D inf
n
t W OS.t/ ! 0:5

o
I

that is, it is the smallest t such that the survival function is less than or equal to 0.5.
To find a 1 " ˛ confidence interval for the median, we consider the following
inequality:

"z˛=2 !
g
n
OS.t/

o
" g.0:5/

r
var

h
g
n
OS.t/

oi ! z˛=2
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where g.u/ D log Œ" log.u/! and var
h
g
n
OS.t/

oi
is given by Eq. 3.1.3. For details, see

Barker [5]. To obtain a 95% confidence interval, we search for the smallest value
of t such that the middle of the expression is at least -1.96 (for the lower limit) and
the largest value of t such that the middle expression does not exceed 1.96 (for the
upper limit). By default, the “survfit” function prints out 95% confidence limits for
the median. To obtain the median survival time for the gastric cancer data, and a
95% confidence interval, just enter the result of the “survfit” function:

> result.km

records n.max n.start events median 0.95LCL 0.95UCL
48.00 48.00 48.00 32.00 10.30 5.79 15.27

Here we see that the median PFS time is 10.30 months, and a 95% confidence
interval ranges from 5.79 to 15.27 months. The median and associated 95%
confidence interval are illustrated in Fig. 3.4. If the upper limit of the pointwise 95%
confidence interval were above the red line, the upper limit would be undefined; if
the survival curve itself were entirely above this red line, the median survival would
also be undefined.
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Fig. 3.4 The median is indicated by the vertical green line at 10.3 months, which intersects the
survival curve estimate at 0.5. The 95% confidence interval is indicated by the vertical blue lines
at 5.79 and 10.27; they intersect the lower and upper survival curve confidence limits at 0.5
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3.3 Median Follow-Up Time

One measure of the quality of a clinical trial is the duration of follow-up, as
measured by the median follow-up time. This is a measure that captures how
long, on average, patients have been followed. But defining this median is not
straightforward. A simple definition is to consider all of the survival times, whether
censored or not, and find the median. A disadvantage of this is that a trial with
many early deaths, but a long observation period, would appear not to have a long
median follow-up time. A perhaps better way of looking at median survival is the
“potential” median survival. To obtain this estimate, one first switches the censoring
and death indicators, so that a “censored” observation is the “event”, while a death
is viewed as a censored observation, in the sense that the observation time would
have been much longer had the patient not died. One then computes the Kaplan-
Meier “survival” estimate using these reversed censoring indicators, and finds the
median survival, as discussed in the previous section. This method is also known as
the “reverse” Kaplan-Meier [59]. We may find these two estimates of the median
follow-up time for the “gastricXelox” data as follows:

> delta.followup <- 1 - delta
> survfit(Surv(timeMonths, delta.followup) ~ 1)

records n.max n.start events median 0.95LCL 0.95UCL
48.0 48.0 48.0 16.0 27.8 21.1 50.2

> median(timeMonths)
[1] 9.950413

The simple median follow-up time is only 9.95 months, whereas the potential
follow-up time is 27.8 months.

3.4 Obtaining a Smoothed Hazard and Survival Function
Estimate

In some applications we may wish to examine the hazard function in addition to
the survival curve. The hazard function at the i’th failure time is di=ni, the number
of deaths at that time divided by the number at risk at that time. In fact, the
Nelson-Altschuler estimate of the cumulative hazard function at time ti, given in the
previous section, is the sum of these hazard estimates up to that time. Unfortunately,
this estimate of the hazard function is quite unstable from one time to the next,
and thus is of limited value in illustrating the true shape of the hazard function.
A better way to visualize the hazard function estimate is by using a “kernel”
smoother [22, 30, 52]. A kernel is a function K.u/, which we center at each failure
time. Typically we choose a smooth-shaped kernel, with the amount of smoothing
controlled by a parameter b. The estimate of the hazard function is given by
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Oh.t/ D 1

b

DX

iD1
K
# t " t.i/

b

$ di
ni

(3.4.1)

where t.1/ < t.2/ < # # # < t.D/ are distinct ordered failure times, the subscript “.i/”
in t.i/ indicates that this is the i’th ordered failure time, di is the number of deaths
at time t.i/; and ni is the number at risk at that time. Note that in the special case
where the kernel function K.u/ D 1when u is a failure time and zero elsewhere, this
estimator is just the Nelson-Altschuler hazard estimator. While there are many ways
to define the kernel function, a common one is the Epanechnikov kernel, K.u/ D
3
4
.1 " u2/, defined for "1 ! u ! 1, and zero elsewhere. In the above formula

for the hazard, there is one kernel function placed at each failure time, scaled by
the smoothing parameter b. Larger values of b result in wider kernel functions, and
hence more smoothing. This is illustrated in Fig. 3.5. Here the three failure times
t D 2; 4; 6 are indicated by gray triangles, and the kernels, adjusted for height as in
equation, are dashed gray. The sum, the smoothed estimate of the hazard, is given
by the blue curve.

One problem with this simple approach to hazard estimation is that a kernel may
put mass at negative times. In the above example, the first kernel function is centered
at time t D 2, and it ranges from t " b D 2" 2:5 D "0:5 to tC b D 2C 2:5 D 4:5.
Since the minimum time is 0, the actual area under the first kernel is too small. To
correct for this, one may use a modified Epanechnikov kernel; for details, see Muller
and Wang [52].
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Fig. 3.5 Illustration of the hazard kernel smoother using the example data from Table 1.1 and the
Kaplan-Meier estimate in Table 3.1
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In the R package, there is a library “muhaz” for estimating and plotting
nonparametric hazard functions. This package must be downloaded and installed
into R. To reproduce the nonparametric curve in Fig. 3.5, use the function “muhaz”
as in the following R code:

> library(muhaz)
> t.vec <- c(7,6,6,5,2,4)
> cens.vec <- c(0,1,0,0,1,1)
>
> result.simple <- muhaz(t.vec, cens.vec, max.time=8,

bw.grid=2.25, bw.method="global", b.cor="none")
> plot(result.simple)

The first two arguments are the failure times and censoring indicators, respec-
tively; the maximum time is set at 8; the smoothing parameter b is specified by
“bw.grid=2.25”; the “global” option means that a constant smoothing parameter is
use for all times; and the “b.cor” option is set to “none” indicating that no boundary
correction is to be done.

We now illustrate estimation of the hazard function for the “gastricXelox” data.
First, let us divide time into equal intervals of width 5 months, and observe the
number of events (progression or death) di and the number of patients at risk each
interval, ni; the hazard estimate for that interval is hi D di=ni. The hazard estimate
using this method may be obtained using the “pehaz” function:

result.pe5 <- pehaz(timeMonths, delta, width=5, max.time=20)
plot(result.pe5, ylim=c(0,0.15), col="black")

The resulting estimate is the solid step function in Fig. 3.6. In the same figure, we
also present the step function for 1-month intervals:

result.pe1 <- pehaz(timeMonths, delta, width=1, max.time=20)
lines(result.pe1)

The “lines” function adds the step function to the same plot. The one-month hazard
function jumps around quite a bit from one interval to the next, which limits its
utility in visualizing the hazard function. For best results for visualizing the hazard
function, we may compute a smooth hazard estimate using the following code:

result.smooth <- muhaz(timeMonths, delta, bw.smooth=20,
b.cor="left", max.time=20)

lines(result.smooth)

Here we choose a smoothing parameter b D 20. The parameter “b.cor” is set to
“left” to indicate that we want a boundary correction at the left, for small times t.

Selection of the appropriate amount of smoothing is one of the most difficult
problems in non-parametric hazard estimation. If the bandwidth parameter is too
small, the estimate may gyrate widely. Chose a parameter too wide and the hazard
function may be too smooth to observe real variations in the hazard function over
time. The “muhaz” function includes an automatic method for selecting a variable
width bandwidth, so that for time regions with few events, a wider smoothing
parameter is used than for time regions densely populated with events. To use this
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Fig. 3.6 Smoothed and step function estimates of the hazard function for the gastricXelox data

automatic variable bandwidth procedure, set the parameter “bw.option” equal to
“local” instead of “global”. More information about the use of “pehaz” and “muhaz”
may be obtained from the R help system.

One use of smoothing the hazard function is to obtain a smooth estimate of the

survival function, using the relationship QS.t/ D e
#

t́

uD0

Oh.u/ du
. To get this estimate, we

need to extract the hazard estimate and list of times at which the hazard is estimated
as follows:

haz <- result.smooth$haz.est
times <- result.smooth$est.grid
surv <- exp(-cumsum(haz[1:(length(haz)-1)]*diff(times)))

The survival curve estimation uses the “cumsum” function, which is a vector of the
cumulative sum of the hazard estimates, and the “diff” function, which computes
the widths (“differences”) of the vector “times”. Since the length of “diff(times)”
is one less than the length of “times” and “haz”, we need to drop the last element
of “haz”. This expression is a numerical evaluation of the integral, which works by
adding up the area of the rectangles under the hazard curve. We may compare our
smoothed survival estimate to the Kaplan-Meier estimate as follows:

result.km <- survfit(Surv(timeMonths, delta) ~ 1,
conf.type="none")

plot(result.km, conf.int=T, mark="|", xlab="Time in months",
xlim=c(0,30), ylab="Survival probability")

lines(surv ~ times[1:(length(times) - 1)])
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Fig. 3.7 Kaplan-Meier and smoothed survival curve estimate for the “gastricXelox” dataset

The smoothed hazard function follows the survival curve fairly well (Fig. 3.7).
Only the first 30 months are shown here, because the smoothing procedure
doesn’t produce estimates beyond the last failure time. While certain specialized
applications may require a smooth survival curve estimate, most published studies
of survival data prefer to report the Kaplan-Meier step function estimate. This
estimate has the theoretical property of being the maximum likelihood estimate of
the survival function. In addition, the step function plot is an effective visual display
of the data, in that it shows when the failures and censoring times occurred.

3.5 Left Truncation

While we have focused on right censoring as a type of incomplete data, there is
another type of incompleteness, called “left truncation,” which we are sometimes
faced with. To understand left truncation, consider again the data from Table 1.1.
Now, instead of examining the time from entry into the clinical trial until censoring
or death, let us use as the time origin the time of diagnosis. The time from diagnosis
to death (or censoring) may be of more practical interest than the time from entry
into the trial to death. To get this additional information, we interview each patient
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Table 3.3 Data from
Table 1.1, with the addition of
the time of diagnosis

Patient Diagnosis Survtime Censor SurvtimeDiag

1 #2 7 0 9
2 #5 6 1 11
3 #3 6 0 9
4 #3 5 0 8
5 #2 2 1 4
6 #5 4 1 9
X #4 #2 1

The time units are still the same, with time 0 indicating the
time of entry into the trial and the time “Diagnosis” indicating
the prior time of diagnosis. The new variable “SurvtimeDiag”
denotes the time from diagnosis until censoring or death.
The variables “Survtime” and “Censor” are as they were in
Table 1.1. The new “Patient X” is a hypothetical patient with
a short time from diagnosis until death. Practically speaking,
such a patient is never observed; even if we somehow had a
record of his diagnosis and early death, we could not possibly
know for certain if that person would have entered the trial
had he lived long enough. Such patients with short survival
times are less likely to be enrolled in the trial than other
patients, resulting in length-biased sampling

when he or she enters the trial to determine the time that the disease was diagnosed.
The times between diagnosis and entry into the trial are known as the “backward
recurrence times,” and are given in Table 3.3. For example, Patient 1 was diagnosed
2 time units before entry into the trial, and was censored at time 7, which refers to
the time from entry into the trial until censoring. Then the total time from diagnosis
to censoring is 7C 2 D 9 time units. The data are plotted in Fig. 3.8.

Entry into the trial is still at time 0, but we have added diagnosis times, indicated
by triangles. “Patient X,” as discussed in Table 3.3.

We may realign so that the time of diagnosis is time 0, as shown in Fig. 3.9. Here,
“Patient X” is no longer shown; such a patient would have died before he or she were
able to register for the clinical trial, and thus would not have been observed. What
are shown are times from diagnosis to death (or censoring), and “left truncation”
times. Had a patient died during one of these intervals (denoted by dashed lines)
that patient would not have been observed. To obtain an unbiased estimate of the
survival distribution, we need to condition on the survival time being greater than
the left truncation time. To do this, we construct the Kaplan-Meier estimator as we
did earlier, but now a patient only enters the risk set at the left truncation time. Thus,
unlike before, the size of the risk set can increase as well as decrease. For example,
the first death is Patient 5, at time 4. at that time, patients 1, 3, 4, and 5 are in the
risk set. After that patient dies, Patients 2 and 6 enter the risk set, and Patient 4 is
censored at time 6. Thus, at time 9, then Patient 6 dies, patients 1, 3, and 6 are at
risk (Table 3.4).
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Fig. 3.8 Data from Table 1.1,
now with diagnosis times

Time from entry

−5 0 5 10

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

Patient 6

Patient X

Fig. 3.9 Time from
diagnosis to death. Entry into
the clinical trial is denoted by
solid circles. The dashed
lines are “left truncation”
times. Had the event occurred
during these intervals, the
patient would not have been
observed

Time from diagnosis

0150

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

Patient 6

In R, we may obtain both estimates as follows:

> tt <- c(7, 6, 6, 5, 2, 4)
> status <- c(0, 1, 0, 0, 1, 1)
> backTime <- c(-2, -5, -3, -3, -2, -5)
> tm.enter <- -backTime
> tm.exit <- tt - backTime
> result.left.trunc.km <- survfit(Surv(tm.enter, tm.exit, status,
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Table 3.4 Nelson-Altschuler estimate of the survival function for the data from Table 3.3

ti ni di qi 1# qi Si D
Q
.1# qi/ H.t/ DP

qi OSNAA.t/ D exp.#H.t//

4 4 1 0.250 0.750 0.750 0.250 0.779
9 4 1 0.250 0.750 0.562 0.500 0.607
11 1 1 1.000 0.000 0.000 1.500 0.223

+ type="counting") ~ 1, conf.type="none")
> summary(result.left.trunc.km)

time n.risk n.event entered censored survival std.err
4 4 1 0 0 0.750 0.217
9 4 1 0 2 0.562 0.230

11 1 1 0 0 0.000 NaN

> result.left.trunc.naa <- survfit(Surv(tm.enter, tm.exit, status,
+ type="counting") ~ 1, type="fleming-harrington", conf.

type="none")
> summary(result.left.trunc.naa)

time n.risk n.event entered censored survival std.err
4 4 1 0 0 0.779 0.225
9 4 1 0 2 0.607 0.248

11 1 1 0 0 0.223 Inf

We have used the terms “tm.enter” and “tm.exit” for the left truncation and survival
times, respectively. The reason is derived from the counting process theory, where a
subject “enters” the observation period at a particular time and then “exits” it at the
time of death or censoring; events that may occur outside of this observation period
are not visible to us.

A serious problem arises with left-truncated data if the risk set becomes
empty at an early survival time. Consider for example the Channing House data,
“ChanningHouse”.3 This data set contains information on 96 men and 361 women
who entered the Channing House retirement community, located in Palo Alto,
Californ. For each subject, the variable “entry” is the age (in months) that the person
entered the Channing House and “exit” is the age at which the person either died,
left the community, or was still alive at the time the data were analysed. The variable
“cens” is 1 if the patient had died and 0 otherwise. This data is subject to left
truncation because subjects who die at older ages are more likely to have enrolled
in the center than patients who died at younger ages. Thus, to obtain an unbiased
estimate of the age distribution, it is necessary to treat “entry” as a left truncation
time. The following code shows the first few records in the data set, converts “entry”
and “exit” from months to years, and selects the men only:

3The data set “ChanningHouse” is included in the “asaur” package. It contains the cases in
“channing” in the “boot” package, but with five cases removed for which the recorded entry time
was later than the exit time.
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> head(ChanningHouse)
sex entry exit time cens

1 Male 782 909 127 1
2 Male 1020 1128 108 1
3 Male 856 969 113 1
4 Male 915 957 42 1
5 Male 863 983 120 1
6 Male 906 1012 106 1

> ChanningHouse <- within(ChanningHouse, {
+ entryYears <- entry/12
+ exitYears <- exit/12})
> ChanningMales <- ChanningHouse[ChanningHouse$sex == "Male",]

Next we estimate the survival distribution for men using first the Kaplan-Meier
estimate and then the Nelson-Altschuler-Aalen estimator, and plot them. In the
following code, the function “Surv” combines the left truncation time, the death
(or censoring) time, and the censoring variable into a single survival variable.

result.km <- survfit(Surv(entryYears, exitYears, cens,
type="counting") ~ 1, data=ChanningMales)

plot(result.km, xlim=c(64, 101), xlab="Age",
ylab="Survival probability", conf.int=F)

result.naa <- survfit(Surv(entryYears, exitYears, cens,
type="counting") ~ 1, type="fleming-harrington",
data=ChanningMales)

lines(result.naa, col="blue", conf.int=F)

The plot is shown in Fig. 3.10. The black curve is the Kaplan-Meier estimate; it
plunges to zero at age 65 because, at this early age, the size of the risk set is
small, and in fact reduces to 0. This forces the survival curve to zero. And, since
the Kaplan-Meier curve is a cumulative product, once it reaches zero it can never
vary from that. The NAA estimate, shown in blue, is based on exponentiating a
cumulative sum, so it doesn’t share this problem of going to zero early on. Still, it
does take an early plunge, also due to the small size of the risk set at the younger
ages. The problemhere is that there is too little data to accurately estimate the overall
survival distribution of men.

Instead, we can condition on men reaching the age of 68, using the “start.time”
option, and estimate the survival among that cohort:

> result.km.68 <- survfit(Surv(entryYears, exitYears, cens,
+ type="counting") ~ 1, start.time=68, data=ChanningMales)
> lines(result.km.68, col="green", conf.int=F)
> legend("topright", legend=c("KM", "NAA", "KM 68 and older"),
+ lty=1, col=c("black", "blue", "green"))

This survival curve, shown in green, is much better behaved. So the only solution
to the problem of a small risk set with left-truncated data is to select a realistic target
(here, survival of men conditional on living to age 68) for which there is sufficient
data to obtain a valid estimate.
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Fig. 3.10 Estimates of the survival (i.e. age at death) function for men entering the Channing
House. The black curve is the Kaplan-Meier estimate, accounting for age at entry as a left
truncation time, and the blue curve is the corresponding Nelson-Altschuler-Aalen estimator. The
green curve is the Kaplan-Meier estimate, also accounting for left truncation, of the survival
distribution conditional on living to age 68

3.6 Additional Notes

1. The “bshazard” function in the package of the same name provides an alternative
method, based on B-splines, for finding smooth estimates of the hazard function.
This function can accommodate left-truncated as well as right censored survival
data.

2. We may estimate other percentiles and confidence intervals in a manner analo-
gous to what we did for the median. Specifically, to estimate the p’th quantile,
we find

Otp D inf
n
t W OS.t/ ! 1 " p

o
: To get the 95% confidence interval, we solve,

for p,

"z˛=2 !
g
n
OS.t/

o
" g.1 " p/

r
var

h
g
n
OS.t/

oi ! z˛=2

where a good choice for the function g.u/ is the complementary log-log
transformation.
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3. As discussed in the text, the confidence bands for the survival curve are only
valid at a pre-specified time point. Simultaneous confidence bands for an entire
survival curve were developed by Hall andWellner [27]; see also Kleinbaum and
Klein [37]. This method was generalized by Matthews [47] and implemented by
the same author in the R package “kmconfband”.

4. Right truncation is another form of length-biased sampling, but it is much more
difficult to accommodate than left truncation. See Lagakos et al. [39] for one
methodological approach, and an application to estimating the latency time of
HIV. Turnbull [73] discusses another approach based on the EM algorithm. The
R package “DTDA” can estimate non-parametric survival curves for data with
censoring and left and right truncation. This package also includes a copy of the
HIV latency blood transfusion dataset used by Lagakos et al. [39].

Exercises

3.1. Refer to Fig. 3.2. Find the median survival, and a 95% confidence interval for
the median. Explain why the upper limit of the confidence interval is undefined.

3.2. In Fig. 3.3, find the first and third quartiles, and 95% confidence intervals for
these quartiles. If any of these quantities are undefined, explain.

3.3. Find a smooth hazard function estimate for the gastric cancer data using kernel
width “bw.grid = 20”. Explain reason for the multiple peaks in the estimate.

3.4. Estimate the survival distribution for men, conditional on reaching the age of
68, ignoring the left truncation times. Discuss the bias of this estimate by comparing
to the estimate presented in Sect. 3.4.



Chapter 4
Nonparametric Comparison of Survival
Distributions

4.1 Comparing Two Groups of Survival Times

Testing the equivalence of two groups is a familiar problem in statistics. Typically
we are interested in testing a null hypothesis that two population means are equal
versus an alternative that the means are not equal (for a two-sided test) or that the
mean for an experimental treatment is greater than that for a standard treatment
(one-sided test). We compute a test statistic from the observed data, and reject the
null hypothesis if the test statistic exceeds a particular constant. The significance
level of the test is the probability that we reject the null hypothesis when the null
hypothesis is in fact true. A widely known test is the two-sample Students t-test for
continuous observations, which requires the assumption that the observations are
normally distributed. If the normal distribution assumption is in doubt, a rank-based
test called theMann-Whitney test may be used, which gives valid test results without
making parametric assumptions. With survival data, if we are willing to assume
that the data follow a particular parametric distribution, we can use likelihood
theory to construct a test for equivalence of the two distributions, as we shall see
in Chap. 10. However, as we have discussed in the previous chapters, survival
data from biomedical experiments or clinical trials generally doesn’t lend itself
to analysis by parametric methods. Thus, we shall construct nonparametric tests
of equivalence of two survival functions, H0 W S1.t/ D S0.t/. Typically, S1 and
S0 will represent the survival distributions for, respectively, an experimental and a
control therapy. Now, a statistical hypothesis test (in the classical hypothesis testing
framework) also requires us to specify an alternative hypothesis, and one might
at first try to specify a one-sided alternative HA W S1.t/ > S0.t/ or two-sided
alternative HA W S1.t/ ¤ S0.t/. Unfortunately, things aren’t so simple in survival
analysis, since the alternative can take a wide range of forms. What if the survival
distributions are similar for some values of t and differ for others? What if the
survival distributions cross? How do we want our test statistic to behave under these
different scenarios? One solution is to consider what is called a Lehman alternative,
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HA W S1.t/ D ŒS0.t/!
 . Equivalently, we can view Lehman alternatives in terms of

proportional hazards as h1.t/ D  h0.t/. Either way we would construct a one sided
test as H0 W  D 1 versus HA W  < 1, so that under the alternative hypothesis
S1.t/ will be uniformly higher than S0.t/ and h1.t/ uniformly lower than h0.t/ (i.e.
subjects in Group 1will have longer survival times than subjects in Group 0). As
we shall see, we can construct a test statistic using the ranks of the survival times.
While these rank-based tests are similar to the Mann-Whitney test, the presence of
censoring complicates the assignment of ranks. Thus, we initially take an alternative
approach to developing this test, where we view the numbers of failure and numbers
at risk at each distinct time as a two-by-two table. That is, for each failure time ti
we may construct a two-by-two table showing the numbers at risk (n0i and n1ifor
the control and treatment arms, respectively) and the number of failures (d0i and
d1i, respectively). Also shown in the table are the “marginals”, that is, the row and
column sums. For example, we have di D d0iCd1i and ni D n0iCn1i. We first order
the distinct failure times. Then for the i’th failure time, we have the following table:

Control Treatment
Failure d0i d1i di

Non-failures n0i # d0i n1i # d1i ni # di
n0i n1i ni

Suppose that the numbers of failures in the control and treatment groups are
independent. If one then conditions on the margins; that is, if one holds di, ni, n0i,
and n1i fixed, then the distribution of d0i follows what is known as a hypergeometric
distribution.

p.d0ijn0i; n1i; di/ D

%
n0i
d0i

&%
n1i
d1i

&

%
ni
di

& (4.1.1)

where
%
n
d

&
D nŠ

dŠ.n " d/Š

represents the number of combinations of n items taken d at a time, and n-factorial is
given by nŠ D n.n " 1/ # # #2. This probability mass function allows one to compute
the probability of each possible table with the margins fixed. One way to better
understand this distribution is to imagine an urn with n0i blue balls and n1i red balls.
From the urn we draw, without replacement, di balls. The number of blue balls in
our sample, d0i, follows a hypergeometric distribution, assuming that there is no
difference between treatments. The mean and variance are given by

e0i D E.d0i/ D
n0idi
ni
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where E.d0i/ is the expected value of d0i, and

v0i D var.d0i/ D
n0in1idi.ni " di/

n2i .ni " 1/

We may sum up over all the tables the differences between the observed and
expected values to get a linear test statistic U0, and also the sum of the variances V0
as follows, where N is the number of subjects:

U0 D
NX

iD1
.d0i " e0i/ D

X
d0i "

X
e0i

var.U0/ D
X

v0i D V0

Then we may construct a test statistic that is standard normal,

U0p
V0

% N.0; 1/

or equivalently we may use the square of that to get a chi-square random variable
with one degree of freedom,

U2
0

V0
% '21

This test is known as the log-rank test. We illustrate it’s calculation in the following
example.

Example 4.1. Consider a hypothetical comparative clinical trial with six subjects
assigned to either a control or treatment group. The survival data for the control
group are 6, 7+, and 15, and for the treatment group they are 10, 19+, and 25
(Table 4.1). In tabular form, with the survival times in increasing order, we have
where “C” denotes a control patient and “T” denotes a treatment patient. Since there

Table 4.1 Survival data Patient Survtime Censor Group

1 6 1 C
2 7 0 C
3 10 1 T
4 15 1 C
5 19 0 T
6 25 1 T



46 4 Nonparametric Comparison of Survival Distributions

Fig. 4.1 Example data
expressed as a series of
two-by-two tables

ti ni di n0i d0i n1i d1i e0i v0i

6 6 1 3 1 3 0 0.500 0.2500
10 4 1 1 0 3 1 0.250 0.1875
15 3 1 1 1 2 0 0.333 0.2222
25 1 1 0 0 1 1 0.000 0.0000

2 1.083 0.6597

are four distinct failure times, we may express this data set as a series of four two-
by-two tables, where D indicates failure and ND, or “not D”, indicates a non-failure,
as shown in Fig. 4.1.

In tabular form, data and calculations of the log-rank test statistic are as follows:
We have U0 D P

d0i " P
e0i D 2 " 1:083 D 0:917, V0 D P

v0i D 0:6597,
and finally the log-rank statistic X2 D U2

0=V0 D 1:27, which we compare to a chi-
square distribution with one degree of freedom. Using the function “survdiff” in the
R “survival” package, we obtain the same value of the chi-square statistic (which is
rounded to 1.3 in the last row of the output):

> tt <- c(6, 7, 10, 15, 19, 25)
> delta <- c(1, 0, 1, 1, 0, 1)
> trt <- c(0, 0, 1, 0, 1, 1)
> survdiff(Surv(tt, delta) ~ trt)

N Observed Expected (O-E)^2/E (O-E)^2/V
trt=0 3 2 1.08 0.776 1.27
trt=1 3 2 2.92 0.288 1.27

Chisq= 1.3 on 1 degrees of freedom, p= 0.259
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The p-value is 0.259, indicating that the group difference is not statistically
significant (which is not surprising due to the extremely small sample size in this
illustration). Also given in the output, for the first row (trt = 0),

P
d0i D 2,P

e0i D 1:083, and in the last column, the chi-square statistic 1.27. The second
row gives the corresponding results for the group trt=1. Due to symmetry, we get
the same value (1.27) for the chi-square statistic calculated using the observed and
expected quantities in the treatment group as we did for the control group.

Interestingly, the log-rank statistic is identical to a classical test statistic from
epidemiology, the Cochran-Mantel-Haenzel test [2]. This is a test for independence
of two factors (here, treatment and outcome) adjusted for a potential confounder,
and is expressed as series of two-by-two tables with a time-stratified confounding
factor. The log-rank test may also be derived from the proportional hazards model,
as we will see in the next chapter.

An important generalization of this test makes use of a series of N weights wi,
with which we may define a weighted log-rank test by

U0.w/ D
X

wi.d0i " e0i/

and

var.U0/ D
X

w2i v0i D V0.w/:

The most common way of setting weights is given by the following expression,
which uses the product-limit estimator from the combined sample, ignoring group:

wi D N
n
OS.ti/

o(

A log-rank test using these weights is called the Fleming-HarringtonG.(/ test [11].
If ( D 0 this test is equivalent to the log-rank test, since then wi D n for all survival
times ti, and of course the constant n cancels out of the test statistics. If ( D 1, we
get what is often known as the Prentice modification (also known as the Peto-Peto
modification) of the Gehan-Wilcoxon test. The effect of this test is then to place
higher weight on earlier survival differences. The following example illustrates this.

Example 4.2. The data set “pancreatic” in the “asaur” package consists of pancre-
atic cancer data from a Phase II clinical trial where the primary outcome of interest is
progression-free survival. As we saw in the previous chapter, this quantity is defined
as the time from entry into a clinical trial until progression or death, whichever
comes first. The data consist of, for each patient, the stage, classified as “LAPC”
(locally advanced pancreatic cancer) or “MPC” (metastatic pancreatic cancer), the
date of entry into the clinical trial, the date of death (all of the patients in this study
died), and the date of progression, if that was observed before death. The first six
observations are shown in this output,
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> head(pancreatic)
stage onstudy progression death

1 MPC 12/16/2005 2/2/2006 10/19/2006
2 MPC 1/6/2006 2/26/2006 4/19/2006
3 LAPC 2/3/2006 8/2/2006 1/19/2007
4 MPC 3/30/2006 <NA> 5/11/2006
5 LAPC 4/27/2006 3/11/2007 5/29/2007
6 MPC 5/7/2006 6/25/2006 10/11/2006

Patient #4, for example, died with no recorded progression (shown using the
missing value indicator “NA”), so that person’s PFS is time to death. For the five
other patients in this list the PFS is time to the date of progression. Following is
code to compute PFS for all 41 patients:

> a t t a c h ( p a n c r e a t i c ) # make t h e v a r i a b l e names a c c e s s i b l e
>
> # c o n v e r t t h e t e x t d a t e s i n t o R d a t e s
> P r o g r e s s i o n . d <# as . d a t e ( a s . c h a r a c t e r ( p r o g r e s s i o n ) )
> OnStudy . d <# as . d a t e ( a s . c h a r a c t e r ( ons t udy ) )
> Death . d <# as . d a t e ( a s . c h a r a c t e r ( d e a t h ) )
>
> # compute p r og r e s s i on #f r e e s u r v i v a l
>
> p rog r e s s i onOn l y <# P r o g r e s s i o n . d # OnStudy . d
> o v e r a l l S u r v i v a l <# Death . d # OnStudy . d
> p f s <# pmin ( p r og r e s s i onOn l y , o v e r a l l S u r v i v a l )
> p f s [ i s . na ( p f s ) ] <# o v e r a l l S u r v i v a l [ i s . na ( p f s ) ]
>
> # c o n v e r t p f s t o months
> p f s . month <# p f s / 3 0 . 5
> # no t e t h a t no o b s e r v a t i o n s a r e c en so r ed . Th i s i s advanced

s t a g e p a n c r e a t i c c an c e r .
>
> p l o t ( s u r v f i t ( Surv ( p f s . month ) ~ s t a g e ) , x l a b ="Time i n months " ,

y l a b =" S u r v i v a l p r o b a b i l i t y " ,
c o l =c ( " b l u e " , " r ed " ) , lwd =2)

> l egend ( " t o p r i g h t " , l egend =c ( " Loca l l y advanced " , " M e t a s t a t i c " ) ,
c o l =c ( " b l u e " , " r ed " ) , lwd =2)

(An alternative version of the data set, “pancreatic2”, with PFS and over-all
survival already computed, is also available in the “asaur” package.) The log-rank
test may be fitted to this data as follows:

> survdiff(Surv(pfs) ~ stage, rho=0)

N Observed Expected (O-E)^2/E (O-E)^2/V
stage=LA 8 8 12.3 1.49 2.25
stage=M 33 33 28.7 0.64 2.25
Chisq= 2.2 on 1 degrees of freedom, p= 0.134

Here, the number of patients in each group equals the corresponding observed
number of events, since there is no censoring. The value of chi-square statistics is
2.2 with 1 degree of freedom, and the p-value is 0.134, which is not statistically
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Fig. 4.2 Survival for pancreatic cancer patients with locally advanced or metastatic disease

significant. Here, we specified that ( D 0. Since this is the default value, it is not
necessary. If we use the Prentice modification, we must specify that ( D 1:

> survdiff(Surv(pfs) ~ stage, rho=1)

N Observed Expected (O-E)^2/E (O-E)^2/V
stage=LA 8 2.34 5.88 2.128 4.71
stage=M 33 18.76 15.22 0.822 4.71
Chisq= 4.7 on 1 degrees of freedom, p= 0.0299

We obtain a p-value of 0.0299, which is statistically significant at the 5% level.
What changed is that this version of the test places higher weight on earlier survival
times. From Fig. 4.2 we see that indeed the metastatic group shows an early survival
advantage over the locally advanced group, but the survival curves converge after
about 10 months. The reason for the difference is that these two tests, with ( D 0
or 1, are optimized for different alternatives. We will return to this issue when we
discuss time dependent covariates and non-proportional hazards.

4.2 Stratified Tests

If there is a need to compare two groups while adjusting for another covariate, there
are two approaches one can use. One is to include the other covariate (or multiple
covariates) as regression terms for the hazard function, an approach we will discuss
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in the next chapter. Alternatively, if the covariate we are adjusting for is categorical
with a small number of levels G, we may construct a stratified log-rank test. This is
a test of the null hypothesis H0 W h0j.t/ D h1j.t/ for j D 1; 2; : : : ;G. Essentially, for
each level of the second variable, we compute a score statistic U0g and variance V0g,
where g D 1; : : : ;G is the group indicator. The test statistic is given by

X2 D

#PG
gD1U0g

$2

PG
gD1 V

2
0g

;

which (as for the unstratified log-rank statistic) may be compared to a chi-square
distribution with one degree of freedom. Treatment center, age group, or gender
are examples of variables on which we might need to stratify. As an example, let us
consider the data set “pharmacoSmoking” in the “asaur” package, where the primary
goal is to compare the time to relapse (defined in this study as return to smoking)
between two treatment groups. We may compare the two groups using a log-rank
test as follows:

> attach (pharmacoSmoking)
> survdiff(Surv(ttr, relapse) ~ grp)

N Observed Expected (O-E)^2/E (O-E)^2/V
grp=combination 61 37 49.9 3.36 8.03
grp=patchOnly 64 52 39.1 4.29 8.03

Chisq= 8 on 1 degrees of freedom, p= 0.00461

If we are concerned that the group comparisonmay differ by age, we may define a
categorical variable, “ageGroup2”, that divides the subjects into those 49 and under
and those 50 and above. We may summarize this variable as follows:

> table(ageGroup2)
ageGroup2
21-49 50+

66 59

The variable “ageGroup2” has two levels, with 66 patients in the 21-49 age group
and 59 patients 50 years old and older. The log-rank test stratified on “ageGroup2”
may be computed as follows:

> survdiff(Surv(ttr, relapse) ~ grp + strata(ageGroup2))

N Observed Expected (O-E)^2/E (O-E)^2/V
grp=combination 61 37 49.1 2.99 7.03
grp=patchOnly 64 52 39.9 3.68 7.03

Chisq= 7 on 1 degrees of freedom, p= 0.008

The chi-square test in this case differs only slightly from the unadjusted value,
indicating that it was not necessary to stratify on this variable.

In the next example we illustrate the impact of a confounder.
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Example 4.3. We shall set up a simulated data set from a clinical trial comparing a
standard therapy (control) to an experimental therapy (treated). For simplicity, we
suppose that the survival times are exponentially distributed, and that the disease
is rapidly fatal, so that there is no censoring. We also suppose that there is a
confounding variable, “genotype”, which can either be wild type (i.e. normal) or
mutant, and that patients carrying the mutant genotype have a considerably poorer
prognosis. Specifically, we set the hazard rate for a mutant patient in the control
group at 0.03 per day, and we assume that the effect of treatment is to reduce
the hazard by a factor of 0.55. We also assume that the hazard rate for wild type
patients is reduced by a factor of 0.2 as compared to mutant patients, and that the
multiplicative effect of treatment on the wild type patients is the same as for the
mutant patients. In R, we set up the four hazard rates as follows:

lambda.mutant.0 <- 0.03
lambda.mutant.1 <- 0.03*0.55
lambda.wt.0 <- 0.03*0.2
lambda.wt.1 <- 0.03*0.2*0.55

Next, we (1) set a “seed” for the random variable generator, so that this example
may be reproduced exactly, (2) generate exponential random variables and string
them together into the variable “ttAll”, (3) create the censoring variable “status”,
and (4) create the treatment variable “trt” and genotype variable, as follows:

set.seed(4321)

tt.control.mutant <- rexp(25, rate=lambda.mutant.0)
tt.treat.mutant <- rexp(125, rate=lambda.mutant.1)
tt.control.wt <- rexp(125, rate=lambda.wt.0)
tt.treat.wt <- rexp(25, rate=lambda.wt.1)
ttAll <- c(tt.control.mutant, tt.treat.mutant, tt.control.wt,

tt.treat.wt)

status <- rep(1, length(ttAll))

genotype <- c(rep("mutant", 150), rep("wt", 150))
trt <- c(rep(0, 25), rep(1, 125), rep(0, 125), rep(1, 25))

The survival plots comparing the two treatments is shown in left plot in Fig. 4.3,
and appears to show that the treatment reduces survival. The log-rank test appears
to confirm this with a very strong p-value:

> survdiff(Surv(ttAll, status) ~ trt)

N Observed Expected (O-E)^2/E (O-E)^2/V
trt=0 150 150 183 6.00 15.9
trt=1 150 150 117 9.41 15.9

Chisq= 15.9 on 1 degrees of freedom, p= 6.66e-05

However, when we plot the survival curves comparing treatment to control
separately for the mutant and wild type patients (Fig. 4.3, right), we see that within
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Fig. 4.3 Comparison of the Kaplan-Meier survival curves for two treatments ignoring the gene
confounder (left) and accounting for it (right)

each genotype the treatment is actually superior to the control. We can confirm this
using a stratified log-rank test, which shows the difference is highly significant:

> survdiff(Surv(ttAll, status) ~ trt + strata(genotype))

N Observed Expected (O-E)^2/E (O-E)^2/V
trt=0 150 150 133 2.17 7.57
trt=1 150 150 167 1.73 7.57

Chisq= 7.6 on 1 degrees of freedom, p= 0.00595

The output from the “survdiff” function does not make it clear which treatment is
the superior one, so it is important to also consult the plot to ascertain the directional
effect of treatment.

The explanation for the confounding is that (1) the treatment improves survival
compared to the control, (2) patients carrying the wild type form of the gene
have better survival than do patients carrying the mutation, and (3) there are more
mutation-carrying patients in the treatment group than in the control group, whereas
the reverse is true for wild type patients. Confounding of this type can easily arise in
an observational study. For example, the frequency of mutants in one ethnic group
may differ significantly from the frequency in the other, and at the same time one
of the groups may have had more access to the experimental therapy than did the
other. If the confounding factor can be observed, then it can be adjusted for, as
we have seen.

4.3 Additional Note

1. The Gehan test, an adaptation of the Wilcoxon rank-sum test to censored data,
is equivalent to a weighted rank test, with weights wi D ni; that is, each term is
weighted by the number of subjects at risk at that time. The Prentice modification
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of the Gehan test uses weights given by wi D nOS.t/. These weights are similar to
those of the Gehan test, but are more stable in small samples [11].

Exercises

4.1. Using the pharmacoSmoking data, compare the two treatments using the
Prentice modification of the Gehan test, and compare your results to those from
the log-rank test.

4.2. Again using the pharmacoSmoking data, carry out a log-rank test comparing
the two treatments stratifying on employment status.

4.3. Using the “pancreatic” data set, which has no censored observations, compare
the two groups using a Wilcoxon rank-sum test, using the “wilcox.test” function
in base R. Compare your results to those from the log-rank and Prentice-modified
Gehan tests.

4.4. Again using the “pancreatic” data set, compare the two groups using overall
survival as the outcome, using both the log-rank test and the Prentice modification
of the Gehan test. Do these two tests yield different results?



Chapter 5
Regression Analysis Using the Proportional
Hazards Model

5.1 Covariates and Nonparametric Survival Models

In the previous chapter we saw how to compare two survival distributions without
assuming a particular parametric form for the survival distributions, and we also
introduced a parameter  that indexes the difference between the two survival
distributions via the Lehmann alternative, S1.t/ D ŒS0.t/!

 . Using Eq. 2.2.1 we
can see that we can re-express this relationship in terms of the hazard functions,
yielding the proportional hazards assumption,

h1.t/ D  h0.t/: (5.1.1)

This equation is the key to quantifying the difference between two hazard functions,
and the proportional hazards model is widely used. (Later we will see how to assess
the validity of this assumption, and ways to relax it when necessary.) Furthermore,
we can extend the model to include covariate information in a vector z as follows:

 D ezˇ: (5.1.2)

While other functional relationships between the proportional hazards constant  
and covariates z are possible, this is by far the most common in practice. This
proportional hazards model will allow us to fit regression models to censored
survival data, much as one can do in linear and logistic regression. However,
not assuming a particular parametric form for h0.t/, along with the presence
of censoring, makes survival modeling particularly complicated. In this chapter
we shall see how to do this using what we shall call a partial likelihood. This
modification of the standard likelihood was developed initially by D.R. Cox [12],
and hence is often referred to as the Cox proportional hazards model.
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5.2 Comparing Two Survival Distributions Using
a Partial Likelihood Function

We begin our discussion of the partial likelihood by considering the simple case
of comparing two groups of survival data. In Sect. 2.6 we constructed a likelihood
based on the exponential distribution by taking a product of terms, one for each
failure and each censoring time. We also saw that we could use the same procedure
using other parametric distributions. But parametric distributions require strong
assumptions about the form of the underlying survival distribution. The partial
likelihood will allow us to use an unspecified baseline survival distribution to define
the survival distributions of subjects based on their covariates. The partial likelihood
differs from a likelihood in two ways. First, it is a product of expressions, one for
each failure time, while censoring times do not contribute any factors. Second, the
factors of a partial likelihood are conditional probabilities.

Let’s fix some notation. We will use j to denote the j’th failure time (where the
failure times are sorted from lowest to highest). The hazard function for Subject i
at failure time tj is hi.tj/. Under the proportional hazards model, we may write this
hazard function as hi.tj/ D h0.tj/ i, and  i D eziˇ: Since we are now considering
the very simple case of comparing a control and experimental group, the covariate
zi is either 1 (if the patient is in the experimental group) or 0 (of the patient is in the
control group). Since patients in the experimental group are, we hope, less likely
than control patients to experience the event, we expect that ˇ < 0, and hence
 < 1. In other words,  i D 1 if a patient is in the control group or  i D  if that
patient is in the experimental group.

Consider now the first failure time t1. The set of all subjects in the trial “at risk”
for failure at this time is denoted by R1: (Just before the first failure, this set is
comprised of all of the patients.) Among the patients in the risk set R1, all are at risk
of failure (i.e. of experiencing the event), and one of them, say Patient i, does fail.
(We assume for now that there are no ties.) The probability that Patient i is the one
who fails is the hazard, hi.t1/ D h0.t1/ i, for that patient divided by the sum of the
hazards of all of the patients:

p1 D
hi.t1/P

k2R1
hk.t1/

D h0.t1/ iP
k2R1

h0.t1/ k
(5.2.1)

where h0.t1/ is the hazard for a subject from the control group. The expression
“k 2 R1” under the summation sign indicates that the sum is taken over all patients
in the risk set R1. A key fact here is that the baseline hazard h0.t1/ cancels out of the
numerator and denominator, so that we have

p1 D
 iP

k2R1
 k
:
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After the event at t1, that patient drops out of the risk set R1, as do any censored
observations that occur after t1 up to and including the second failure time t2,
resulting in a new (and smaller) risk set R2. We then repeat this calculation to
obtain p2, and so on up to the last failure time. The partial likelihood is the product
L. / D p1p2 # # # pD, assuming that there are D failure times. In each factor the
baseline hazard cancels out of the numerator and denominator, so that it plays no
role in the final partial likelihood.

Example 5.1. Let us consider again the synthetic data in Table 4.1. At time 0, there
are six patients in the data set, all of which are at risk of experiencing an event.
We call this group of patients the initial risk set R1. As we can see in the first table
in Fig. 4.1, just before the first failure time, t D 6, there are still six patients at
risk, any one of which could experience the event. For our simple example, we have
 1 D  2 D  4 D 1 and  3 D  5 D  6 D  . Substituting into Eq. 5.2.1 we have,
for the event at time 6.

p1 D
1 # h0.t1/

3 # h0.t1/ C 3 # h0.t1/
D 1

3 C 3

That is, there are six patients at risk, with six corresponding terms in the denom-
inator. One of them fails, a control patients, so a “1” appears in the numerator.
Note that h0.t1/ cancels out of the numerator and denominator. This cancellation is
crucial since it removes parameters for the baseline survival distribution from the
partial likelihood. The factor for the second failure time may be found in the same
way. Of the six patients at risk at the first time, one dropped out because of a failure,
and also a control patient dropped out at time 7 due to censoring. The factor for the
second failure time, t D 10, is thus

p2 D
 

3 C 1
:

Here, as in the first factor, the hazard h02 at the second failure time cancels out of
the numerator and denominator. For the third failure time, t D 15, there are three
patients at risk, one control and two treated. A control patient fails, so we have

p3 D
1

2 C 1
:

Finally, at the last event time t D 25, there is only one subject at risk, who has
the event, so the last factor is just 1. The partial likelihood is the product of these
expressions,

L. / D  

.3 C 3/.3 C 1/.2 C 1/
:
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Working with this function will be easier if we make the variable transformation
 D eˇ . Then we have

l.ˇ/ D ˇ " log
'
3eˇ C 3

(
" log

'
3eˇ C 1

(
" log

'
2eˇ C 1

(
:

The maximum partial likelihood estimate is the value of  that maximizes this
function which, as we have said, is independent of the baseline hazard function
h0.t/. Notice that the particular values of the failure times do not contribute to
this function; only the order matters. Also notice that, unlike a likelihood function,
this partial likelihood is not a probability, since factors for censored times are
not included. Still, one can treat this as if it were a likelihood, and find the
maximum partial likelihood estimate of ˇ. In R, we may do this by first defining
the function l.ˇ/ W
plsimple <- function(beta) {

psi <- exp(beta)
result <- log(psi) - log(3*psi + 3) -

log(3*psi + 1) - log(2*psi + 1)
result }

We may find the m.p.l.e. (maximum partial likelihood estimate) using the
“optim” function. The control parameter “fnscale” is set to -1 so that optim will
find the maximum of the function “plsimple”. (The default would be to find the
minimum.)

> result <- optim(par=0, fn = plsimple, method = "L-BFGS-B",
+ control=list(fnscale = -1),
+ lower = -3, upper = 1)
> result$par
[1] -1.326129

Thus, the m.p.l.e. is Ǒ D "1:326129. We may see this by plotting l.ˇ/ versus ˇ, as
in Fig. 5.1:

The solid curved black line is a plot of the log partial likelihood over a range of
values of ˇ. The maximum is indicted by the vertical dashed blue line, and the value
of the l.p.l. at that point is -3.672. Also shown is the value -4.277 of the l.p.l. at the
null hypothesis value, ˇ D 0. The tangent to the l.ˇ/ curve at ˇ D 0 is shown by
the straight red line. Its slope is the derivative of the log-likelihood (i.e. the score
function) evaluated at ˇ D 0. Interestingly, this is exactly the value of the log-
rank statistic U which we obtained in the previous chapter. This simple example
illustrates a general principle: The score function, obtained by taking the derivative
of the log partial likelihood, evaluated at ˇ D 0 , is equivalent to the log-rank
statistic. In Sect. 5.4 we will discuss the score test in more detail and also other tests
derived from the partial likelihood.
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Fig. 5.1 Plot of the log partial likelihood function versus ˇ. The maximum partial likelihood
estimate is indicated by the vertical dashed blue line. The null hypothesis at ˇ D 0 is indicated by
the vertical dashed red line. The slope of the red tangent line is the value of the score statistic. The
observed information values I. Ǒ/ and I.0/ are also given

5.3 Partial Likelihood Hypothesis Tests

In standard likelihood theory, one can derive three forms of the test of H0 W ˇ D 0:
the Wald test, the score test, and the likelihood ratio test. In survival analysis, we
may use the partial likelihood to derive these three tests, although the underlying
statistical theory for the partial likelihood is far more complex than that for standard
likelihood theory [19]. Often - but not always - the three tests yield similar
results. To develop the tests, we need two functions derived from the partial log
likelihood. The first, the score function, is the first derivative of the log likelihood,
S.ˇ/ D l0.ˇ/. The second function, the information, is minus the derivative of the
score function, or equivalently minus the second derivative of the log-likelihood,
I.ˇ/ D "S0.ˇ/ D "l00.ˇ/. The second derivative l00.ˇ/ is also known as the
Hessian. With the substitution of the parameter estimate Ǒ into the information,
we obtain the observed information.
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5.3.1 The Wald Test

The Wald test is perhaps the most commonly used test, and carrying it out is
straightforward from computer output. The test statistic is of the form Z D
Ǒ=s:e:. Ǒ/, where “s.e.” stands for “standard error.” In the previous section, we saw
that Ǒ was the value of ˇ that maximizes l.ˇ/. We know from basic differential
calculus that we may find the maximum by solving S.ˇ/ D l0.ˇ/ D 0 for ˇ.
Ordinarily this is a non-linear function that must be solved numerically using an
iterative procedure. To find the variance of Ǒ, we evaluate the information, I. Ǒ/ D
"l00. Ǒ/. That is, the information (technically, the “observed information”) is minus
the second derivative of the partial likelihood, evaluated at Ǒ. I. Ǒ/ is a measure
of the curvature of the likelihood at Ǒ. Intuitively, higher values of the curvature
reflect a sharper curve, more “information”, and lower variance. Lower curvatures,
by contrast, corresponds to flatter curves and higher variance. The variance of Ǒ is
approximately 1=I. Ǒ/, and the standard error is s:e:. Ǒ/ D 1=

q
I. Ǒ/. We may use

this to construct a normalized test statistic Zw D Ǒ=s:e. Ǒ/; and reject H0 W ˇ D 0 if
jZwj > z˛=2. We can also construct a 1 " ˛ confidence interval, Ǒ ˙ z˛=2 # s:e:. Ǒ/.
Equivalently, we can use the fact that the square of a standard normal random
variable has a chi-square distribution with one degree of freedom, and reject the
null hypothesis if Z2w > '

2
˛;1.

5.3.2 The Score Test

The score function is the first derivative of the partial log-likelihood, S.ˇ/ D
l0.ˇ/. The variance of the score statistic is I.ˇ/. We evaluate the score and
information at the null hypothesis value of ˇ, normally ˇ D 0. The test statistic
is Zs D S.ˇ D 0/=

p
I.ˇ D 0/, and we reject H0 W ˇ D 0 if jZsj > z˛=2, or

equivalently if Z2s > '
2
˛;1. The score test is equivalent to the log-rank test, as we saw

in the previous section. This test can be carried out without finding the maximum
likelihood estimate Ǒ.

5.3.3 The Likelihood Ratio Test

The likelihood ratio test uses the result from statistical theory that
2
h
l.ˇ D Ǒ/" l.ˇ D 0/

i
follows approximately a chi-square distribution with

one degree of freedom. The key advantage of this test over the other two is that
it is invariant to monotonic transformations of ˇ. For example, whether the test is
computed in terms of ˇ or in terms of  D eˇ has no effect at all on the p-value for
testing H0 W ˇ D 0.
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We may illustrate these three tests using the simple data of Example 5.1.

Example 5.1 (continued). Let us continue with this simple data set we discussed in
Sect. 5.2. We begin by presenting the output from the “coxph” function. The result is
put into a data structure called “result.cox”, and a complete summary of the results
we obtain using the “summary” function,

1 > result.cox <- coxph(Surv(tt, status) ~ grp)
2 > summary(result.cox)
3 Call: coxph(formula = Surv(tt, status) ~ grp)
4
5 n= 6, number of events= 4
6
7 coef exp(coef) se(coef) z Pr(>|z|)
8 grp -1.3261 0.2655 1.2509 -1.06 0.289
9

10 exp(coef) exp(-coef) lower .95 upper .95
11 grp 0.2655 3.766 0.02287 3.082
12
13 Concordance= 0.7 (se = 0.187 )
14 Rsquare= 0.183 (max possible= 0.76 )
15 Likelihood ratio test= 1.21 on 1 df, p=0.2715
16 Wald test = 1.12 on 1 df, p=0.2891
17 Score (logrank) test = 1.27 on 1 df, p=0.2591

We will explain the computations of the estimates and test statistics as follows.
We use the associated log partial likelihood function “plsimple” that we created
in Sect. 5.2. We may compute the derivative of the log-likelihood (i.e. the score)
evaluated at ˇ D 0 numerically using the “gradient” function in the package
“numDeriv” (which must be separately downloaded and installed),

> library(numDeriv)
> grad(func=plsimple, x=0)
[1] -0.917

The result -0.917 is thus the score evaluated at the null hypothesis, and is the slope
of the red tangent line in Fig. 5.1. To carry out the score test, we also need the
information, which we obtain using the “hessian” function as follows:

> hessian(func=plsimple, x=0)
[,1] [1,] -0.660

This is the curvature of the log-likelihood at the point where the tangent touches the
log-likelihood in Fig. 5.1. The score test statistic, expressed as Z2s , is the square of
the score at ˇ D 0 divided by minus the hessian (information), also at ˇ D 0 , as
follows:

."0:917/2=0:660 D 1:274:

This is the result given on line 17 of the summary output. We compare this to a
chi-square distribution with one degree of freedom. The score test p-value is given
by the upper tail,



62 5 Regression Analysis Using the Proportional Hazards Model

> pchisq(1.274, df=1, lower.tail=F)
[1] 0.259

This score test p-value is also given on line 17.
To compute the Wald test, we need the maximum partial likelihood estimate,

which we saw in Sect. 5.2 is Ǒ D "1:326129. We also need the information at this
point, which is the curvature at the peak of the curve in Fig. 5.1. We compute this as
for the score test, but evaluated at Ǒ. This is “result.cox$par”, and here is the hessian
for the Wald test:

> hessian(func=plsimple, x=result.cox$par)
[,1]

[1,] -0.639

The square root of minus the reciprocal of the hessian is the standard error,

> sqrt(1/0.639)
[1] 1.251

The parameter estimate and standard error are given on line 8. Finally, the Wald test
statistic Zw and two-sided p-value for the test are given by

> -1.326/1.251
[1] -1.060
> 2*pnorm(1.060, lower.tail=F)
[1] 0.289

These results may also be found on line 8. The square of the test statistic is 1.124,
and this result may be found on line 16, along with the same Wald p-value of 0.289.

The likelihood ratio statistic is twice the difference in the log partial likelihoods
evaluated at Ǒ and at 0:
> betahat <- result.cox$par
> 2*(plsimple(betahat) - plsimple(0))
[1] 1.209

In the figure, this is twice the vertical difference between the log-likelihood at Ǒ and
at 0. This result may be found on line 15, along with the p-value derived from the
chi-square distribution,

> pchisq(1.209, 1, lower.tail=F)
[1] 0.271

Two additional portions of the output are often useful. The statistic “r-squared”
is an adaptation to survival analysis of the R2 statistic from linear regression. Here
it is defined as follows:

R2 D 1 "
 
l.0/

l. Ǒ/

!2=n

and reflects the improvement in the fit of the model with the covariate compared to
the null model. The “Concordance” is the C-statistic, a measure of the predictive
discrimination of a covariate. See Harrell [28] for more details.
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5.4 The Partial Likelihood with Multiple Covariates

We now develop in greater generality the partial likelihood we introduced in
Sect. 5.2. We define the hazard ratio (relative to the baseline hazard) for subject
i by  i D ez

0
iˇ: As in the previous section, zi is a vector of covariate values for

subject i, and ˇ is a vector of coefficients, with one coefficient for each covariate.
The hazard ratio parameter could be written more completely as  .zi; ˇ/; but for we
will generally use  i for brevity. Just before the first failure time, all of the subjects
are said to be “at risk” for failure, and among these, one will fail. The “risk set” is the
set of all individuals at risk for failure, and is denoted by Rj. The partial likelihood
is a product of terms, one for each failure time. For each factor, (i.e., for each i),
the denominator is the sum of all risks in the risk set Ri (denoted by “k 2 Rj”) of
hk D h0 k and the numerator is the hazard hi D h0 i for the individual in the risk
set Ri who experienced the failure. As we saw previously, the baseline hazards h0.tj/
cancel out of all of the terms, as follows:

L.ˇ/ D
DY

jD1

h0.tj/ jP
k2Rj

h0.tj/ k
D

DY

jD1

 jP
k2Rj

 k
(5.4.1)

This function is called a partial likelihood because it lacks factors for the censored
observations. Nevertheless, it may be used as if it were a likelihood, an idea first
proposed by Cox [12]. The log partial likelihood is as follows, using D to represent
the number of deaths in the set D :

l.ˇ/ D
DX

jD1

2

4log. j/ " log

0

@
X

k2Rj

 k

1

A

3

5 D
DX

jD1
z0jˇ "

DX

iD1
log

0

@
X

k2Rj

ez
0
kˇ

1

A

The score function, which is the first derivative of l.ˇ/, has p components, one
for each of the p covariates. The l’th component is given by (recalling that
log. j/ D z0jˇ, and using the fact that zjl D @ log. j/=@̌ l)

Sl.ˇ/ D
@l.ˇ/
@̌ l

D
DX

jD1

0

BB@zjl "

P
k2Rj

zjke
z0jˇ

P
k2Rj

ez
0
j ˇ

1

CCA :

As we will see in Chap. 7, we may view the score function as the sum of “residuals”,
each of which consists of the observed value zij of the covariate minus an “expected”
value. In the special case where zi is a single binary covariate, S.ˇ D 0/ is the log-
rank statistic.

To construct test statistics as we did in Sect. 5.3, we will need the second
derivative of the log-likelihood with respect to all pairwise combinations of the k
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covariates. Writing the score function as a vector with k components, we may define
the observed informationmatrix as follows:

I.ˇI z/ D "@
2l.ˇ/
@̌ @̌ 0 D "@S.ˇ/

@̌
:

Also known as theHessianmatrix, this may be derived using standard differential
calculus. The Wald, score, and likelihood ratio test statistics of H0 W ˇ D 0 are,
respectively,

X2w D Ǒ0I. ǑI z/ Ǒ;

X2s D S0.ˇ D 0I z/ # I#1.ˇ D 0I z/ # S.ˇI z/;

and

X2l D 2
n
l.ˇ D Ǒ/ " l.ˇ D 0/

o
:

All three are, under the null hypothesis, asymptotically chi-square random variables
with k " 1 degrees of freedom. We shall see specific examples of these tests in the
next chapter.

5.5 Estimating the Baseline Survival Function

An estimate of the baseline hazard function is given by

h0.ti/ D
di

P
j2Rj

exp.zj Ǒ/
:

In the case of a single sample, with ˇ D 0, this reduces to the Nelson-Altschuler-
Aalen estimator in Eq. 3.1.4. The baseline survival function is

S0.t/ D exp Œ"H0.t/! ;

and an estimate may be obtained by estimating H0.t/ as a cumulative sum of the
estimated hazards h0.tj/ for tj ! t. This is the estimator of the survival function
of an individual with all covariate values set to zero. For many cases this is not a
desirable or even sensible estimate. For example, if one of the covariates is “age
of onset”, setting that to zero will not result in a baseline survival curve with any
practical meaning. To find a survival curve for a particular covariate value z use

S.tjz/ D ŒS0.t/!
exp.z Ǒ/ :
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In R the “basehaz” function will compute a cumulative baseline hazard function. Be
sure to use the option “centered = F” to cause it to estimate the cumulative hazard at
ˇ D 0. The default is to estimate it at the mean of the covariates. This will often not
make sense, particularly for categorical covariates such as treatment indicator, sex,
or race.

5.6 Handling of Tied Survival Times

Tied survival time can arise in two ways. If the underlying data are continuous, ties
may arise due to rounding. For example, survival data may be recorded in terms of
whole days, weeks, or months. In this case, the ties are a form of incomplete data, in
that the true times are not tied. The other way tied survival data may arise is when
the survival times are genuinely discrete. For example, in an industrial setting, the
survival time may represent the number of compressions of a device until it fails. Or,
in a study of effectiveness of birth controlmethods, survival time may be represented
by the number of menstrual cycles until pregnancy.We will consider these two cases
separately. (If censoring times are tied with failure times, the general convention is to
consider the failures to precede the censoring times, so that the censored individuals
are still in the risk set at the time of failure.) We shall illustrate these two cases using
a simple data set.

Example 5.2. Suppose that we are comparing a control to a treatment group, with
control survival times 7+, 6, 6+, 5+, 2, and 4, and treated times 4, 1, 3+ and 1. In this
data set there are four distinct failure times, with ties at the first failure time t D 1
and at the third failure time t D 4. If the underlying times are actually continuous,
we use the proportional hazards model

h.tI z/ D ezˇh0.t/

where z D 1 or 0 for a treated or control patient, respectively.
The partial likelihood is then the product of four factors, one for each distinct

failure time. At the first time, t D 1, all 10 patients are at risk, and two of them, both
from the treatment group, and either of those two patients may have failed first.
The first factor of the partial likelihood may be represented as the sum of these two
possibilities:

L1.ˇ/ D
eˇ

4eˇ C 6
# eˇ

3eˇ C 6
C eˇ

4eˇ C 6
# eˇ

3eˇ C 6
:

Since both events are in the treatment group, the form of the two terms is the
same. At the second failure time, t D 2, there are eight subjects at risk, two in
the treatment group and six in the control group, and only one failure, a subject in
the control group. The second factor is thus

L2.ˇ/ D
1

2eˇ C 6
:
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At the third failure time, t D 4, there are six subjects at risk, and two failures, one
in the treatment and one in the control group. The third factor is thus a sum of the
two possible orderings of these two failures,

L3.ˇ/ D
1

eˇ C 5
# eˇ

eˇ C 4
C eˇ

eˇ C 5
# 1
5
:

The final factor is a constant. Thus, we may write the full partial likelihood as
the product of these three terms. Since this method essentially averages over an
enumeration all possible orderings of the tied failure times, we refer to this method
as the marginal method for ties.

If the times are in fact discrete, and the tied survival times are true ties, then we
may model these using the discrete logistic model,

h.tI z/
1 " h.tI z/ D ezˇ

h0.t/
1 " h0.t/

:

At the first failure time, t D 1, there are
%
10

2

&
D 45 possible pairs that could

represent the two failures. We may enumerate these possibilities by listing the
proportionality terms as rows and columns, and the products as the lower diagonal
as in Fig. 5.2.

Fig. 5.2 Computation of partial likelihood term for tied discrete failure times
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The numerator of the first partial likelihood factor is e2ˇ since both of the subjects
who failed at this time were in the treatment group. The denominator is the sum
over all possible pairs:

L1.ˇ/ D
e2ˇ

6e2ˇ C 24eˇ C 15
:

The second factor is the same as it was previously,

L2.ˇ/ D
1

2eˇ C 5
:

For the third failure time, there are
%
6

2

&
D 15 possible pairs, of which one is from

the treatment group and one from the control group. So the numerator is eˇ # 1 and
the denominator has 15 terms,

L3.ˇ/ D
eˇ # 1

5eˇ C 10

and the partial likelihood using this method is, of course, the product of these three
factors. We shall call this method the exact discrete method.

We may enter this data set into R as follows:

> tt <- c(7, 6, 6, 5, 2, 4, 4, 1, 3, 1)
> status <- c(0, 1, 0, 0, 1, 1, 1, 1, 0, 1)
> grp <- c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1)

The partial log-likelihoods for the continuous exact and discrete exact may be
defined as

loglikContinuous <- function(b) {
result <- 3*b + log(exp(b) + 9) - log(4*exp(b) + 6) -

log(3*exp(b) + 6) - log(2*exp(b) + 6) -
log(exp(b) + 5) - log(exp(b) + 4)

result
}

loglikDiscrete <- function(b) {
resultA <- exp(2*b)/(6*exp(2*b) + 24*exp(b) + 15)
resultB <- 1/(6 + 2*exp(b))
resultC <- exp(b)/(10+5*exp(b))
result <- log(resultA) + log(resultB) + log(resultC)
result
}

We may find the maximum partial likelihood estimates using the “optim” function,

> result.optim.continuous <- optim(par=1.4, fn=loglikContinuous,
+ method="BFGS", control=list(fnscale = -1) )

> result.optim.discrete <- optim(par=1.4, fn=loglikDiscrete,
+ method="BFGS", control=list(fnscale = -1) )
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The results are as follows:

> result.optim.continuous$par
[1] 1.838591

> result.optim.discrete$par
[1] 1.856719

We may compare these results to those from “coxph” with the “exact” method,

> result.coxph <- coxph(Surv(tt, status) ~ grp, ties="exact")
> result.coxph$coef

grp
1.856768

The “exact” method in “coxph” corresponds to the discrete exact method, which
typically will be similar in value to the marginal method.

Both of these methods require exhaustive enumeration for tied survival times,
and they become computationally burdensome for data sets with more than a small
number of tied observations. Fortunately, approximate methods are available. The
first, and simplest, is the Breslow approximation, adjusts both terms of the marginal
method so that they have the same denominator, corresponding to all subjects at
risk. The first and third factors are just

L1.ˇ/ D
2e2ˇ

'
6eˇ C 4

(2

and

L3.ˇ/ D
2.1 # eˇ/
'
eˇ C 5

(2 #

(The second term is the same as before, as there are no ties.)
A more refined method is the Efron method, in which the Breslow method

denominator is replaced by a better approximation,

L1.ˇ/ D
eˇ'

6eˇ C 4
( # eˇ'

0:5eˇ C 0:5eˇ C 4eˇ C 4
(

and

L3.ˇ/ D
1

'
eˇ C 5

(2 # eˇ'
0:5C 0:5eˇ C 3

( :

At the first failure time, the denominator of the first factor contains terms for all 10
subjects at risk, while in the second factor it has the 8 subjects still at risk after the
failures, plus one-half of each of the subjects that fail at that time. Intuitively, each
of these subjects has a chance of one-half of being in the second denominator, since
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one of them would have been the first failure. Similarly, for the third failure time, the
denominator of the second factor has the three subjects that do not fail, and one-half
of each of the subjects that will fail; one of these is a control and one a treatment
subject.

5.7 Left Truncation

In Sect. 3.5 we discussed how left-truncation can arise in a clinical trial setting when
the question of interest is time from diagnosis (rather than time from enrollment)
to death or censoring. The same considerations arise in a comparative clinical
trial. To illustrate this, consider data from a hypothetical trial of six patients, three
receiving an experimental treatment and three receiving a standard therapy. The time
“tt” represents the time from entry into the trial until death or censoring, “status”
indicates whether or not a death was observed, and “grp” indicates which group the
patient is in. The time “backTime” refers to the backwards recurrence time, that is,
the time before entry when the patient was diagnosed. We may enter the data into R
as follows:

tt <- c(6, 7, 10, 15, 19, 25)
status <- c(1, 0, 1, 1, 0, 1)
grp <- c(0, 0, 1, 0, 1, 1)
backTime <- c(-3, -11, -3, -7, -10, -5)

The data are plotted in Fig. 5.3. The standard way to compare the two groups is to
ignore the backwards recurrence times:

> coxph(Surv(tt, status) ~ grp)

coef exp(coef) se(coef) z p
grp -1.33 0.266 1.25 -1.06 0.29

Likelihood ratio test=1.21 on 1 df, p=0.271 n= 6, number
of events= 4

This result shows that the experimental group has a lower hazard than the control
group, but this difference is not statistically significant (p-value = 0.271 based on
the likelihood ratio test). There is nothing wrong with this standard and widely-
used method; since there is no reason to believe that the backwards recurrence
times would differ between the two groups, there should be no concern about bias.
However, in some circumstances one may wish to compare survival times starting
from time from diagnosis, and then it is essential to account for the left truncation.
The data can be re-configured so that the diagnosis occurs at time 0 as follows:

tm.enter <- -backTime
tm.exit <- tt - backTime

These data are plotted in Fig. 5.4.
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Fig. 5.3 Survival times and
backwards recurrence times
for data from a comparative
clinical trial. Patients marked
“T” received the experimental
treatment, and those marked
“C” received the standard
therapy
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Fig. 5.4 Re-aligned data
with left truncation
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The left-truncated data may be compared as follows:

> coxph(Surv(tm.enter, tm.exit, status, type="counting") ~ grp)

coef exp(coef) se(coef) z p
grp -1.07 0.342 1.24 -0.869 0.39

Likelihood ratio test=0.81 on 1 df, p=0.368
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In this example, using the full survival times (from diagnosis) with left truncation
leads to a similar non-significant treatment difference conclusion. (The option “type
= ‘counting’ ” is not required, since the “Surv” function will use it by default in this
case.)

Another example is the Channing House data, which we discussed in Sect. 3.5.
We may compare the survival of men and women, accounting for the different ages
of entry. As before, we condition on subjects reaching the age of 68. We have to do
this explicitly, since the “start.time” option we used previously is not available in
the “coxph” function,

channing68 <- ChanningHouse[ChanningHouse$exitYears >= 68,]

Here are the results, which show that men have a higher hazard (and hence lower
survival) than do women, but this difference is not statistically significant:

> coxph(Surv(entryYears, exitYears, cens, type="counting") ~ sex,
+ data=channing68)

coef exp(coef) se(coef) z p
sexMale 0.273 1.31 0.176 1.55 0.12

Likelihood ratio test=2.3 on 1 df, p=0.129

Note that the variables “entryYears” and “exitYears” were defined in Sect. 3.5 and
added to the “ChanningHouse” data set.

5.8 Additional Notes

1. An alternative R program for fitting the Cox proportional hazards model is “cph”,
in the “rms” package developed by Frank Harrell [28]. This function actually
calls the main fitting program for the standard “coxph” function in the survival
library, so that both functions produce identical results. The “cph” function adds
additional options and is compatible with other routines in the “rms” package.

2. The theoretical properties of the partial likelihood using counting process theory
were first elucidated by Aalen [1], For a full treatment, see for example Andersen
et al. [3] and Fleming and Harrington [19].

Exercises

5.1. Consider the data set “aml”, which is included in the “survival” package. This
is a study of whether or not maintenance therapy increases survival among patients
with acute myelogenous leukemia, with survival time measured in weeks. The basic
Cox model may be fitted as follows:

result <- coxph(Surv(time, status) ~ x, data=aml)



72 5 Regression Analysis Using the Proportional Hazards Model

Create a coarser time variable by expressing it in months instead of weeks as
follows:
time.months <- cut(aml$time, breaks=seq(0,161,4), labels=F)

Now re-fit the model, modeling ties using the Breslow, Efron, and exact methods.
Which approximate method gives a result closest to that from the exact method?

5.2. Consider again the synthetic data in Table 4.1, discussed in Example 5.1
in Sect. 5.2. Use the “basehaz” function to obtain an estimate of the baseline
cumulative hazard function. Use this to compute the predicted survival curves for
the control and experimental groups based on the proportional hazards model we
fitted in Sect. 5.2.



Chapter 6
Model Selection and Interpretation

6.1 Covariate Adjustment

Survival analysis studies typically include a wealth of clinical, demographic, and
biomarker information on the patients as well as indicators for a therapy or other
intervention. If the study is a randomized clinical trial, the focus will be on
comparing the effectiveness of different treatments. A successful randomization
procedure should ensure that confounding covariates are balanced between the
treatments. Still, we may wish to include such covariates in the model to adjust for
any differences that may have arisen, and also to understand how these other factors
affect survival. If the study is based on observational data, and if there is a primary
intervention of interest, then adjustment for potential confounders is essential to
obtaining a valid estimate of the intervention effect. The effect of other covariates on
survival will also be of interest in such a study, and in some applications discovery
and quantification of explanatory variables may be the primary goal. Regardless of
the type of study, we will need methods to sift through a potentially large number
of potential explanatory variables to find the important ones.

To illustrate the importance of covariate adjustment, let us again look at the
simulated data in Example 4.3 of Chap. 4, which presented a study of the effect
of treatment on survival in the presence of a genetic confounder. Here is a Cox
proportional hazards model of the effect of treatment on survival unadjusted for the
genetic mutation status of the patients:

> coxph(Surv(ttAll, status) ~ trt)

coef exp(coef) se(coef) z p
trt 0.464 1.59 0.117 3.96 7.6e-05

Likelihood ratio test=15.5 on 1 df, p=8.2e-05

We see that the estimate of the log hazard ratio treatment effect, Ǒ; is 0.464.
Since this is positive, higher hazards are associated with the treatment than with
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the control. That is, the treatment appears to reduce survival, which would be an
unfortunate result. The value of e Ǒ D 1:59 is also given, suggesting (incorrectly, as
we know) that the treatment is associated with a 59% additional risk of death over
the control. We can stratify on genotype, just as we did previously with the log-rank
test, as follows:

> coxph(Surv(ttAll, status) ~ trt + strata(genotype))

coef exp(coef) se(coef) z p
trt -0.453 0.636 0.164 -2.76 0.0058

Likelihood ratio test=7.66 on 1 df, p=0.00566

Now the coefficient is negative, indicating that, within each genotype, the treatment
is effective. With the Cox model, we also have the option of explicitly estimating
the genetic effect,

> coxph(Surv(ttAll, status) ~ trt + genotype)

coef exp(coef) se(coef) z p
trt -0.452 0.636 0.163 -2.77 0.0056
genotypewt -1.568 0.209 0.183 -8.59 0.0000

Likelihood ratio test=93.4 on 2 df, p=0

Here we also see the correct treatment effect.We also see that the wild type genotype
has lower hazard than the reference (mutant) genotype, and thus that the mutant
genotype incurs additional risk of death.

6.2 Categorical and Continuous Covariates

The previous sections considered a partial likelihood for comparing two groups,
indexed by a covariate z. Since z can take the values 0 or 1 depending on
which of two groups a subject belongs to, this covariate is called an indicator or
dummy variable. Typically in survival analysis, as in linear or logistic regression,
we will want to include in our model a variety of types of patient data. In
addition to group assignment for a randomized trial, we may have demographic
information; examples might include the patient’s age, gender, race, and income
level. Furthermore, there may be clinical variables, such as blood measurements
and disease stage indicators. All of this information will be encoded as covariates,
some of which are continuous (e.g. age or blood pressure), and others which are
categorical (e.g. gender or race). Categorical variables with only two levels can
be handled with dummy variables as we did for treatment group. For gender, for
example, we arbitrarily choose one gender, say males, as the reference group and
code that with a zero. Then females would be coded with a one. With categorical
variables with three or more variables, we will need multiple dummy variables.
Suppose, for example, that the variable “race” has four levels, “white”, “asian”,
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“black”, and “other”. We first need to select one level as a reference level, to which
all the others will be compared. This choice could be arbitrary, or driven by the
goals of the research project. For example, if an important research question is
how survival in non-white groups compares to survival in whites, one would select
“white” as the reference variable. Since there are four levels, we need to create three
dummy variables, say, z2, z3, and z4 to represent “race”. Then for a white patient,
all three would take the value zero. For an Asian person, we would have z2 D 1,
and z1 D z3 D 0. For persons of race black or other, we make the corresponding
assignments. In this model, at most one of the three dummy variables can be 1, and
the others must be 0. (Dealing with persons of mixed race would be handled in a
more complex way, certainly not by making more than one dummy variable take the
value 1.)

Once we have settled on a set of k covariates, some of which are dummy variables
and some continuous variables, we may write the model as follows:

log. i/ D z1iˇ1 C z2iˇ2 C # # # C zkiˇk:

For each covariate, the parameter ˇj is the log hazard ratio for the effect of that
parameter on survival, adjusting for the other covariates. For continuous covariates,
it represents the effect of a unit change in the covariate; for dummy variables,
it represents the effect of the corresponding level as compared to the reference
covariate. We will write this in more compact form as log. i/ D z0iˇ (for Patient i),
where z0i (the transpose of zi) is a 1 & k matrix (i.e. a row matrix) of covariates, and
ˇ is a k & 1 matrix (i.e. a column matrix) of parameters.

We may enhance this model in two ways. First, it is possible that a continuous
variable is not linearly related to the log hazard. In that case, we may consider
transforming it using, say, a logarithmic or square root function before entering it
into the model. Or we can enter a variable twice, once as a linear variable and once as
the square of that variable. Another choice is to “discretize” a variable. For example,
an age variable could be split into three pieces, “under 50” and “50-64”, and “65 and
above” and entered into the model as a categorical variable.

The second enhancement to the model is to incorporate interaction terms. For
example, suppose that gender and age do not contribute additively to the log hazard.
Then one can directly enter into the model gender and age and also an interaction
term constructed as the product of age and gender. Interactions with categorical
variables with more than two levels are also possible. For example, the interaction
of age with race (with four levels, say) would involve adding three terms composed
of the product of age with the three race dummy variables.

While these models are similar to ones used in linear and logistic regression, there
are also some key differences. For example, since survival data evolve over time,
there is a possibility that some covariate values may also change as time passes.
Initially, however, we require that all covariates are fixed at the beginning of the
trial, and thus cannot change in response to evolving conditions. For example, if
there are two treatment groups, the assignment to a group must be made at time 0,
and not depend on anything that may happen later in the trial. Time-related variables
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such as age must also be defined by taking their value at the beginning of the trial.
For example, in a clinical trial, “age” might be defined as the age at the time of
randomization, so that it’s value is fixed even though (obviously) patients will age
as the trial progresses. Later we will see how to modify the model to accommodate
time-varying covariates.

Another way that proportional hazards models differ from those used in other
types of regression is that there is no intercept term; if there were one, it would
appear in both the numerator and denominator of the partial likelihood, and cancel
out just as the baseline hazard canceled out. Another way to think of it is that any
intercept term would be absorbed into the baseline hazard.

Example 6.1. Suppose that we have two black patients, two white patients, and two
patients of other races, with ages 48, 52, 87, 82, 67, and 53, respectively. We may
enter these data values as follows:
race <- factor(c("black", "black", "white", "white", "other",

"other"))
age <- c(48, 52, 87, 82, 67, 53)

We use the function “factor” to convert a vector of character variables to one of
type “factor”; this conversion will make it easier to incorporate this variable into
statistical models. We may create a matrix of dummy variables for race and also a
column for age using the “model.matrix” function as follows:
> model.matrix(~ race + age)[,-1]

raceother racewhite age
1 0 0 48
2 0 0 52
3 0 1 87
4 0 1 82
5 1 0 67
6 1 0 53

Here we have removed the first column of the matrix (using the “"1” selection),
since it is a column of 1s for the intercept. As explained above, in survival analysis,
we do not include an intercept term. The first column contains indicators for “other
race” and the second for “white race”; both are compared to “black race” here. If we
need to use whites as the reference, we can change the race factor to have “white”
as the reference level,
> race <- relevel(race, ref="white")
> model.matrix(~ race + age)[,-1]

raceblack raceother age
1 1 0 48
2 1 0 52
3 0 0 87
4 0 0 82
5 0 1 67
6 0 1 53

In this example we have three covariates, say, z1, z2, and z3, the first two of
which are dummy variables for black race and other race, and the third a continuous
variable, age. For the first subject, a black 48-year old person, the log hazard ratio is
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log. 1/ D z11ˇ1 C z12ˇ2 C z13ˇ3 D 1 & ˇ1 C 0 & ˇ2 C 48 & ˇ3:

Thus, ˇ1 represents the log hazard ratio for blacks as compared to whites, and ˇ3
represents the change in log hazard ratio that would correspond to a one-year change
in age.

If we wish to include an interaction between race and age, we can express it as
follows:

> model.matrix(~ race + age + race:age)[,-1]
raceblack raceother age raceblack:age raceother:age

1 1 0 48 48 0
2 1 0 52 52 0
3 0 0 87 0 0
4 0 0 82 0 0
5 0 1 67 0 67
6 0 1 53 0 53

The interaction terms (last two columns) are just the product of the first two columns
and the third (age) column.

To show how models are incorporated into a survival problem, we will generate a
small survival data set in this example:

Example 6.2. We first generate 60 ages between 40 and 80 at random:

age <- runif(n=60, min=40, max=80)

Next, we set the race variable so that there are 20 of each category, andmake “white”
the reference category:

race <- factor(c(rep("white", 20), rep("black", 20),
rep("other", 20)))

race <- relevel(race, ref="white")

The survival variables in our simulated data will be exponentially distributed with a
particular rate parameter that depends on the covariates. Specifically, we set the log
rate parameter to have baseline "4:5, and the race variable to take the values 1 and
2 for “black” and “other” respectively, when compared to “white”. Finally, we let
“age” increase the log rate by 0.05 per year:

log.rate.vec <- -4.5 + c(rep(0,20), rep(1,20), rep(2,20))
+ age*0.05

Finally, we define the exponential survival variables, with no censoring:

tt <- rexp(n=60, rate=exp(log.rate.vec))
status <- rep(1, 60)

Now we can fit a Cox proportional hazards model,

> library(survival)
> result.cox <- coxph(Surv(tt, status) ~ race + age)
> summary(result.cox)
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n= 60, number of events= 60
coef exp(coef) se(coef) z Pr(>|z|)

raceblack 1.15154 3.16305 0.36752 3.133 0.00173 **
raceother 2.49905 12.17087 0.42936 5.820 5.87e-09 ***
age 0.07798 1.08110 0.01448 5.385 7.24e-08 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

We see that the coefficient estimates, 1.15, 2.50, and 0.08, are close to the true
values from the simulation, (1, 2, and 0.05). These estimates are log hazard ratios.
To describe the estimated effect of, say, “black race” compared to “white race”, we
can look at the “exp(coef)” column, and conclude that blacks have 3.16 times the
risk of death as do whites. The model matrix for “race + age” is as discussed above,
and is created within the “coxph” function. The parameter estimates are maximum
partial likelihood estimates. The Z test statistics and p-values for statistical tests are
generalizations of the two-group comparison Wald tests described in the previous
section. In the next section, we discuss how to handle proportional hazards models
such as this one where there are multiple covariates.

6.3 Hypothesis Testing for Nested Models

Now that we have the tools to fit models with multiple covariates, let’s use these
tools to compare models for the “pharmacoSmoking” data, which was introduced
in Chap. 1. When constructing statistical tests, it is necessary to compare what are
called “nested” models. That is, when comparing two models, the covariates of one
model must be a subset of the covariates in the other. For example, consider the
following two models, which we define by listing the covariates to be included in
the proportional hazards model:

Model A: ageGroup4
Model B: employment
Model C: ageGroup4 + employment
Here, Model A is nested in Model C, and Model B is also nested in Model C, so

these models can be compared using statistical tests. But Models A and B can’t be
directly compared in this way. Now, “ageGroup4” and “employment” are covariates
with four and three levels, respectively:

> levels(ageGroup4)
[1] "21-34" "35-49" "50-64" "65+"
> levels(employment)
[1] "ft" "other" "pt"

where “ft” and “pt” refer to full-time and part-time employment, respectively.When
we fit these models in R, it will by default choose the first level as the reference level:

> modelA.coxph <- coxph(Surv(ttr, relapse) ~ ageGroup4)
> modelA.coxph

coef exp(coef) se(coef) z p
ageGroup435-49 0.0293 1.030 0.309 0.0947 0.920
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ageGroup450-64 -0.7914 0.453 0.336 -2.3551 0.019
ageGroup465+ -0.3173 0.728 0.444 -0.7153 0.470

Likelihood ratio test=12.2 on 3 df, p=0.00666

> modelB.coxph <- coxph(Surv(ttr, relapse) ~ employment)
> modelB.coxph

coef exp(coef) se(coef) z p
employmentother 0.198 1.22 0.237 0.836 0.40
employmentpt 0.450 1.57 0.323 1.394 0.16

Likelihood ratio test=2.06 on 2 df, p=0.357

> modelC.coxph <- coxph(Surv(ttr, relapse) ~ ageGroup4 +
+ employment)
> modelC.coxph

coef exp(coef) se(coef) z p
ageGroup435-49 -0.130 0.878 0.321 -0.404 0.6900
ageGroup450-64 -1.024 0.359 0.359 -2.856 0.0043
ageGroup465+ -0.782 0.457 0.505 -1.551 0.1200
employmentother 0.526 1.692 0.275 1.913 0.0560
employmentpt 0.500 1.649 0.332 1.508 0.1300

Likelihood ratio test=16.8 on 5 df, p=0.00492

From the results of Model C, we can see that some levels of the predictors are
statistically significant based on the Wald tests in the last column. For example, we
see that the “50-64” age group has a lower hazard when compared to the reference
(which we noted above is the “21-34” age group), with log-hazard ratio of "1:024
and a p-value of 0.0043. We also see that those with part-time employment have a
higher hazard when compared to the baseline (which we noted above is the “full-
time” group), with a log-hazard ratio of 0.526 and a p-value of 0.056, which may be
seen as not quite statistically significant at the 0.05 level. But we cannot easily see
from these p-values whether or not the term “ageGroup4” or the term “employment”
belong in the model. These we can assess using a (partial) likelihood ratio test. The
log-likelihoods for the three models are as follows:

> logLik(modelA.coxph)
’log Lik.’ -380.043 (df=3)

> logLik(modelB.coxph)
’log Lik.’ -385.1232 (df=2)

> logLik(modelC.coxph)
’log Lik.’ -377.7597 (df=5)

Let us begin be determining if “ageGroup4” belongs in the model by comparing
Models A and C. The null hypothesis is that the three coefficients for “ageGroup4”
are zero, and the alternative is that they are not all zero. The likelihood ratio
statistic is

2
#
l. Ǒfull " l. Ǒreduced

$
D 2."377:7597C 380:043/ D 4:567:
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This is twice the difference between the partial log-likelihood evaluated at the “full”
model (Model C) and the value at the “reduced” model (Model A), We compare
this to a chi-square distribution with 5 " 3 D 2 degrees of freedom, which is the
difference in degrees of freedom for the two models. The p-value is thus

> pchisq(4.567, df=2, lower.tail=F)
[1] 0.1019268

and we would conclude that the effect of “ageGroup4” is not statistically significant
when “employment” is included in the model.

Similarly we can compare Models B and C to test for the importance of
“employment” in the presence of “age”:

2
#
l. Ǒfull " l. Ǒreduced

$
D 2."377:7597C 385:1232/D 14:727:

We compare this to a chi-square distribution with 5 " 2 D 3 degrees for freedom:

> pchisq(14.727, df=3, lower.tail=F)
[1] 0.002065452

We thus conclude that “employment” belongs in the model if “ageGroup4” is also
included, since the p-value for the former is extremely small.

Should “ageGroup4” even be in the model? To carry out a likelihood ratio test
for this factor we need to refer to what we shall call the “null” model, one with no
covariates. We may evaluate this as follows:

> model.null.coxph <- coxph(Surv(ttr, relapse) ~ 1)
> logLik(model.null.coxph)
’log Lik.’ -386.1533 (df=0)

(The “logLik” function also returns a warning connected to having zero degrees of
freedom. We may ignore this, since the value of the log likelihood is correct.) This
null model is nested within Model A (and is actually nested in all other models), so
we may compute the likelihood ratio test as follows:

2
#
l. Ǒfull " l. Ǒreduced

$
D 2."380:043C 386:1533/ D 12:2206

which we compare to a chi-square distribution with 3" 0 D 3 degrees of freedom:

> pchisq(12.2206, df=3, lower.tail=F)
[1] 0.006664445

This result, which shows that “ageGroup4” by itself is strongly statistically signifi-
cant, is identical to the results given above in the output from Model A. In fact, the
function “coxph” always prints the value of the likelihood ratio test for the fitted
model as compared to the null model. Since the reference model is always the null
model, another way to carry out the likelihood ratio test for, for example, Model
B to Model C, is to take the differences of the printed log-likelihood statistics,
e.g., 16:8 " 12:2 D 4:6, which (to one decimal place) is identical to the value
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we computed using the “logLik” function. A more direct way to compare models
is using the “anova” function, which directly computes test statistic, degrees of
freedom, and p-value:

> anova(modelA.coxph, modelC.coxph)
Analysis of Deviance Table
Cox model: response is Surv(ttr, relapse)

Model 1: ~ ageGroup4
Model 2: ~ ageGroup4 + employment

loglik Chisq Df P(>|Chi|)
1 -380.04
2 -377.76 4.5666 2 0.1019

6.4 The Akaike Information Criterion for Comparing
Non-nested Models

When we have a specific hypothesis to test, the methods of the previous section
are appropriate. But often we have a large number of potential factors and need
to prune the model so that only necessary covariates are included. There are a
number of tools available to aid this process. A well-known method is “stepwise”
model selection. In the “forward” version of this method, we first fit univariate
models, one for each covariate. The covariate with the smallest p-value is chosen
and added to the base model. Then, with that covariate included, a separate model
is fitted with each single additional covariate also included. We then select the best
second variable (the one with the smallest p-value), so that we have a model with
two covariates. We continue until no additional covariate has a p-value less than
a certain critical value; common critical p-values are 5% and 10%. The result is
the “final” model, presumably including all the covariates that are related to the
outcome, and excluding the ones unrelated to it. In another version, known as the
“backwards” stepwise procedure, we start with all the covariates in the model, and
then remove them one by one, each time removing the one with the largest p-value.
The procedure continues until the p-values are below the critical p-value.

There are a number of problems with the stepwise procedure. For one thing,
due to multiple comparisons, the p-values that are produced from one stage to
the next are not what they appear to be. Thus, the decision criterion for model
selection (e.g. to continue until all p-values are less than a particular value, often
0.05) does not necessarily produce a list of covariates that are statistically significant
at that level. Another problem is that p-values are only valid for nested models,
as discussed in the previous section. Thus, this procedure does not allow one to
compare non-nested models. A better way of looking at the model search procedure
is to compute a quantity known as the Akaike Information Criterion, or AIC. This
quantity is given by AIC D "2 # l. Ǒ/ C 2 # k, where l. Ǒ/ denotes the value of the
partial log likelihood at the M.P.L.E. for a particular model, and k is the number of
parameters in the model. The value of the AIC balances two quantities which are
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properties of a model. The first is goodness of fit,"2 # l. Ǒ/. This quantity is smaller
for models that fit the data well. The second quantity, the number of parameters,
is a measure of complexity. This enters the AIC as a penalty term. Thus, a “good”
model is one that fits the data well (small value of "2 # l. Ǒ/) with few parameters
(2k), so that smaller values of AIC should in theory indicate better models. For
example, again considering the “pharmacoSmoking” model, we can compute the
AIC for model A as follows: AIC D 2& 380:043C 2& 2 D 766:086. But it is more
convenient to use the “AIC” function:

> AIC(modelA.coxph)
[1] 766.086
> AIC(modelB.coxph)
[1] 774.2464
> AIC(modelC.coxph)
[1] 765.5194

The best fitting model from among these three, using the AIC criterion, is then
Model C. This is the model that includes both “ageGroup4” and “employment”.
Model A, which includes only “ageGroup4”, is a close second choice.

While we could in principle compute the AIC for all possible combinations of
covariates, in practice this may be computationally impractical. An alternative is
to return to the stepwise procedure, using AIC (instead of p-values) to drive the
covariate selection. Here is an example for the pharmacoSmoking data, where we
start with all of the covariates, and use the “step” function to find a more parsimo-
nious model using the AIC criterion:

modelAll.coxph <- coxph(Surv(ttr, relapse) ~ grp + gender + race
+ employment + yearsSmoking + levelSmoking +

ageGroup4 + priorAttempts + longestNoSmoke)

result.step <- step(modelAll.coxph, scope=list(upper=~ grp +
gender + race + employment + yearsSmoking +
levelSmoking + ageGroup4 + priorAttempts +
longestNoSmoke, lower=~grp) )

The results of the first step are as follows:

Start: AIC=770.2 Surv(ttr, relapse) ~ grp + gender + race +
employment + yearsSmoking + levelSmoking + ageGroup4 +
priorAttempts + longestNoSmoke

Df AIC
- race 3 766.98
- yearsSmoking 1 768.20
- gender 1 768.20
- priorAttempts 1 768.24
- levelSmoking 1 768.47
- longestNoSmoke 1 769.04
<none> 770.20
- employment 2 772.45
- ageGroup4 3 774.11
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The terms in the model are listed in order from the one which, when deleted,
yields the greatest AIC reduction (“race” in this case) to the smallest reduction
(“ageGroup4”). Thus, “race” is deleted. This procedure continues until the last step:

Step: AIC=758.42 Surv(ttr, relapse) ~ grp + employment
+ ageGroup4

Df AIC
<none> 758.42
+ longestNoSmoke 1 759.10
- employment 2 760.31
+ yearsSmoking 1 760.34
+ gender 1 760.39
+ priorAttempts 1 760.40
+ levelSmoking 1 760.41
+ race 3 761.53
- ageGroup4 3 767.24

The “+” sign shows the effect on AIC of adding certain terms. This table shows
that no addition or subtraction of terms results in further reduction of the AIC. The
coefficient estimates for the final model are

> result.step
coef exp(coef) se(coef) z p

grppatchOnly 0.656 1.928 0.220 2.986 0.0028
employmentother 0.623 1.865 0.276 2.254 0.0240
employmentpt 0.521 1.684 0.332 1.570 0.1200
ageGroup435-49 -0.112 0.894 0.322 -0.348 0.7300
ageGroup450-64 -1.023 0.359 0.360 -2.845 0.0044
ageGroup465+ -0.707 0.493 0.502 -1.410 0.1600

Likelihood ratio test=25.9 on 6 df, p=0.000233

We may display these results as a forest plot in Fig. 6.1 (see appendix for a
discussion of forest plots),

This is a plot of the coefficient estimates and 95% confidence intervals, each
with respect to a reference level. For example, we can see that triple therapy

Fig. 6.1 Forest plot of
estimates of log hazard ratios
for the final model fit to the
pharmacoSmoking data

Treatment Group
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Employment
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   other
   part time

Age group
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   50−64
   65+
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(the reference) is better than the patch alone, that those with full-time work
(the reference) have a better success rate than those working part time and those
with the “other” employment status. We also see that the upper age groups (50 and
above) had better results than younger patients.

An alternative to the AIC is the “Bayesian Information Criterion”, sometimes
called the “Schwartz criterion”. It is given by BIC D "2 # log.L/ C k # log.n/. The
key difference is that the BIC penalizes the number of parameters by a factor of
log.n/ rather than by a factor of 2 as in the AIC. As a result, using the BIC in model
selection will tend to result in models with fewer parameters as compared to AIC.

6.5 Including Smooth Estimates of Continuous Covariates
in a Survival Model

When a covariate is continuous, we are interested in whether that covariate is
related to survival and, if so, in what manner. That is, is the relationship to the
log-hazard linear? Or is it a quadratic or other non-linear relationship? Let us
consider again the pharmacoSmoking data. We found, in the previous section, that
treatment group, employment status, and age are related to time to relapse. We
entered “age” in the model by dividing it into four age groups, 21-34, 35-49, 50-64,
and 65 and older, and found that the two older age groups were associated with
increased time to relapse as compared to the two younger groups. From Fig. 6.1
we see that this relationship (on the log-hazard ratio scale) appears not to be linear.
An alternative way to model a non-linear relationship is via “smoothing splines”.
Splines are mathematical constructs made of pieces of polynomial functions that
are stitched together to form a smooth curve. The points where these pieces are
joined are called “knots”. The challenges in using smoothing splines are, first, to
select the location of the knots, and second, to find an optimal set of polynomials
to model the statistical relationship. A classical treatment of splines is de Boor
[13], and their use in statistics has been discussed by many authors. In survival
analysis, an effective method of finding a smoothing spline is via “penalized partial
likelihood.” The quantity to be optimized consists of two parts, the partial log
likelihood discussed in earlier chapters, and a penalty term. Splines with many knots
are complex and tend to increase the partial log-likelihood, since they improve the
fit of the model. The penalty term is an integral of the second derivative, so that
increasing complexity of the spline curve decreases this second term. The sum
of these two parts, the penalized partial log-likelihood, is a quantity that, when
maximized, balances goodness of fit against complexity. For details of this method,
see Therneau and Grambsch [68].

This “pspline” function may be used with “coxph” to fit a smoothing spline to
the pharmacoSmoking data as follows:
> modelS4.coxph <- coxph(Surv(ttr, relapse) ~ grp + employment +
+ pspline(age, df=4) )
> modelS4.coxph
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Fig. 6.2 Penalized spline fit
of age
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coef se(coef) se2 Chisq DF p
grppatchOnly 0.651 0.221 0.219 8.67 1.00 0.0032
employmentother 0.633 0.277 0.275 5.21 1.00 0.0220
employmentpt 0.570 0.340 0.333 2.81 1.00 0.0940
pspline(age, df = 4), lin -0.034 0.010 0.010 11.07 1.00 0.0009
pspline(age, df = 4), non 4.20 3.08 0.2500

Iterations: 3 outer, 9 Newton-Raphson
Theta= 0.709

Degrees of freedom for terms= 1.0 2.0 4.1
Likelihood ratio test=27.3 on 7.02 df, p=0.000297 n= 125

We see, as we saw previously, that “grp”, “employment”, and “age” are important
predictors of the log-hazard.Now, however, the continuous variable “age” is fitted as
a linear component and a nonlinear component. The linear component is "0:0339,
indicating that older individuals have a lower log hazard of relapse. The non-linear
component, with a p-value of 0.25, is not statistically significant, indicating that
there is not enough data to state definitively that the relationship is non-linear. We
may plot the relationship of age to log hazard using the “termplot” function:

termplot(modelS4.coxph, se=T, terms=3, ylabs="Log hazard")

The option “se=T” produces the confidence limits, and the “terms=3” option
specifies that the third variable (age) is the one we want to plot. The plot is shown in
Fig. 6.2. This shows a decreasing relationship with age, as we have seen previously,
with a slight upward turn after age 65. However, the data is rather sparse at these
older ages, as reflected by the wide confidence interval. Thus, this confirms our
observation that the departure from linearity cannot be established.
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6.6 Additional Note

1. See, for example, Harrell [28] for a general discussion of model-selection issues.
Hosmer, Lemeshow, and May [32] have extensive advice on model selection in
the context of survival analysis.

Exercises

6.1. The data set “hepatocelluar” is in the “asaur” package. It contains 17 clinical
and biomarker measurements on 227 patients, as well as overall survival and
time to recurrence, both recorded in months [42, 43]. There are three mea-
sures of CXCL17 activity, CXCL17T (intratumoral), CXCL17P (peritumoral), and
CXCL17N (nontumoral). There is a particular interest in whether they are related to
overall and also recurrence-free survival. Which of the three is most strongly related
for each survival outcome? For the one most strongly related with survival, fit a
spline model and plot it, as we did in Sect. 6.5. Does this suggest that categorizing
CXCL17 would be appropriate?

6.2. For the covariates with complete data (in Columns 1–22), use stepwise
regression with AIC to identify the best model for (a) overall survival, and
(b) recurrence-free survival.



Chapter 7
Model Diagnostics

7.1 Assessing Goodness of Fit Using Residuals

The use of residuals for model checking has been well-developed in linear regres-
sion theory (see for example Weisberg, 2014 [77]). The residuals are plotted versus
some quantity, such as a covariate value, and the observed pattern is used to diagnose
possible problemswith the fitted model. Some residuals have the additional property
of not only indicating problems but also suggesting remedies. That is the pattern
of the plotted residuals may suggest an alternative model that fits the data better.
Many of these residuals have been generalized to survival analysis. In addition, the
fact that survival data evolves over time, and requires special assumptions such as
proportional hazards, makes it necessary to develop additional diagnostic residual
methods.

7.1.1 Martingale and Deviance Residuals

An important tool for assessing the goodness of fit of a model is to compare the
censoring indicator (0 for censored, 1 for death) for each subject to the expected
value of that indicator under the proportional hazards Coxmodel. If there are no time
dependent covariates and if the survival times are right-censored, this is given by

mi D ıi " OH0.ti/ exp.z0i Ǒ/:

These residuals, which originate from the counting process theory underlying the
Cox proportional hazards model, sum to 1, range in value from "1 to a maximum
of 1, and each has an expected value of zero. The residual is essentially the
difference between the observed value (1 or 0) of the censoring indicator and its
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expected value under a particular Cox model. The asymmetry of the residuals might
appear to be a disadvantage, but Therneau and Grambsch [68], in Chap. 5, show that
a plot of these residuals versus the covariate z can reveal not only discrepancies in
the model but also the actual functional form of this covariate.

Martingale residuals may be used much as residuals that the reader may be
familiar with from linear regression. However, unlike those, the sum of squares of
Martingale residuals cannot be used as a measure of goodness of fit. The “deviance”
residual is an alternative that does have this property. It may defined in terms of the
martingale residual as follows [69]:

di D sign.mi/ # f"2 # Œmi C ıi log .ıi " mi/!g1=2

These residuals are symmetrically distributed with expected value 0 (if the fitted
model is correct). The sum of squares of these residuals is the value of the likelihood
ratio test, which is analogous to the deviance from generalized linear model theory
[48]. While the properties of deviance residuals might seem preferable to those of
martingale residuals, only the latter have the property of showing us the functional
form of a covariate. For this reason, in practice, the martingale residuals are more
useful.

Example 7.1. Consider the “pharmacoSmoking” data set, and a fit of the “null” Cox
proportional hazards model. A null model is one with no fitted covariates. There is
still a partial likelihood, and the model produces martingale residuals which take the
form mi D ıi " OH0.ti/ exp.z0ˇ/:We may plot these against continuous predictors to
get a preliminary assessment of which of these predictors should be in the model,
and what form they should take. We first read in the data and truncate the variable
“priorAttempts” at 20, since recorded values of this variable that exceed 20 are not
likely to be correct,

> pharmacoSmoking <- read.csv("PharmacoSmoking.csv")
> priorAttemptsT <- priorAttempts
> priorAttemptsT[priorAttempts > 20] <- 20

We may fit the null model and obtain these residuals as follows:

> library(survival)
> result.0.coxph <- coxph(Surv(ttr, relapse) ~ 1)
> rr.0 <- residuals(result.0.coxph, type="martingale")

We next assess the potential relationship of survival to age, prior attempts at
quitting, and longest prior period without smoking. We plot these null model
residuals versus each of these variables and also versus log transformations of
these variables. In the following, since the smallest value of “priorAttemptsT” and
“longestNoSmoke” is zero, we add one to each before taking the log transformation.
We fit a “loess” smooth curve through each set of residuals to better assess the
shapes of the relationships, using the “loess” function. In order to also get 95%
confidence intervals for these smooth curves, we use the function “smoothSEcurve”,
a simple plotting function that is defined in the appendix. The results are in Fig. 7.1.
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Fig. 7.1 Martingale residuals from a null model fit to the pharmacoSmoking data, plotted versus
three continuous predictors and one log-transformed predictor

In this figure, the three plots on the left are for untransformed variables, and the
three on the right are for log transformations of these variables.

> par(mfrow=c(3,2))
> plot(rr.0 ~ age)
> smoothSEcurve(rr.0, age)
> title("Martingale residuals\nversus age")

> logAge <- log(age)
> plot(rr.0 ~ logAge)
> smoothSEcurve(rr.0, logAge)
> title("Martingale residuals\nversus log age")
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> plot(rr.0 ~ priorAttemptsT)
> smoothSEcurve(rr.0, priorAttemptsT)
> title("Martingale residuals versus\nprior attempts")

> logPriorAttemptsT <- log(priorAttemptsT + 1)
> plot(rr.0 ~ logPriorAttemptsT)
> smoothSEcurve(rr.0, logPriorAttemptsT)
> title("Martingale residuals versus\nlog prior attempts")

> plot(rr.0 ~ longestNoSmoke)
> smoothSEcurve(rr.0, longestNoSmoke)
> title("Martingale residuals versus\n
+ longest period without smoking")

> logLongestNoSmoke <- log(longestNoSmoke+1)
> plot(rr.0 ~ logLongestNoSmoke)
> smoothSEcurve(rr.0, logLongestNoSmoke)
> title("Martingale residuals versus\n
+ log of longest period without smoking")

In each case, the untransformed variables show considerable non-linearity. Note
in particular the first plot, versus age, that shows the same non-linear relationship
we modeled directly (with “pspline”) in Sect. 6.5. This illustrates that the use of
martingale residuals with a null model is an alternative way to identify the form of
a non-linear relationship. The log-transformation of “LongestNoSmoke” produces
a curve that will be easier to adjust for using linear models, whereas with “age” and
“priorAttempts”, the log-transformation doesn’t appear to help.

As in the previous chapter, we use the “step” function to identify a model with
low AIC:

result.grp.coxph <- coxph(Surv(ttr, relapse) ~ grp)
result.step <- step(result.grp.coxph, scope=list(upper=~ grp +

gender + race + employment + yearsSmoking +
levelSmoking + age + priorAttemptsT +
logLongestNoSmoke, lower=~grp) )

The resulting model is as follows:

> result.step
coef exp(coef) se(coef) z p

grppatchOnly 0.6079 1.837 0.2184 2.78 0.0054
age -0.0353 0.965 0.0108 -3.28 0.0010
employmentother 0.7035 2.021 0.2693 2.61 0.0090
employmentpt 0.6537 1.923 0.3273 2.00 0.0460

Likelihood ratio test=22 on 4 df, p=0.000198 n= 125, number of
events= 89

We may now assess the final model by creating residuals and then plotting them
versus the final selected predictors,

> rr.final <- residuals(result.step, type="martingale")
> par(mfrow=c(2,2))
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> plot(rr.final ~ age)
> smoothSEcurve(rr.final, age)
> title("Martingale residuals\nversus age")

> plot(rr.final ~ grp)
> title("Martingale residuals\nversus treatment group")

> plot(rr.final ~ employment)
> title("Martingale residuals\nversus employment")

The results, shown in Fig. 7.2, show that the residuals treatment group and
employment are evenly distributed over the values of the covariates. The variable
“age” still shows some possible deviation, but it is much improved over the plot for
the null model.
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Fig. 7.2 Martingale residuals from final model
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7.1.2 Case Deletion Residuals

Some subjects may have an especially large influence on the parameter estimates.
Since some such influential subjects may indicate a problem with the data, it is
helpful for the data analyst to have tools that can identify those subjects. Case
deletion residuals (also called “jackknife residuals”) serve this purpose. For each
subject, a case deletion residual is the difference in the value of the coefficient using
all of the data and its value when that subject is deleted from the data set. Using the
pharmacoSmoking data set, we illustrate computation of these residuals using “age”
as a predictor. First, we find the coefficient for age (the fourth coefficient) using all
the data:
> result.coxph <- coxph(Surv(ttr, relapse) ~ grp + employment

+ age)
> coef.all <- result.coxph$coef[4]
> coef.all

age
-0.03528934

Next, for each subject in turn (“n.obs” subjects in all), we delete the ith subject
from the survival time “tt”, censoring indicator “relapse”, and covariates “grp”,
“employment”, and “age”, and fit a Cox model to this reduced data set. The results
for the ith subject go into “result.coxph.i”. We extract the age coefficient (the
fourth element of the vector of coefficient estimates) into “coef.i” and compute the
jackknife residual as the difference of “coef.i” and “coef.all”:
n.obs <- length(ttr)
jkbeta.vec <- rep(NA, n.obs)
for (i in 1:n.obs) {

tt.i <- ttr[-i]
delta.i <- relapse[-i]
grp.i <- grp[-i]
employment.i <- employment[-i]
age.i <- age[-i]
result.coxph.i <- coxph(Surv(tt.i, delta.i) ~ grp.i +

employment.i + age.i)
coef.i <- result.coxph.i$coef[4]
jkbeta.vec[i] <- (coef.all - coef.i)
}

We may plot these residuals versus the patient id’s, which we place in the vector
“index.obs”. In the plot function, “type=’h’ ” causes the residuals to be plotted as
spikes. Finally, “abline(h=0)” plots a horizontal line through 0.
index.obs <- 1:n.obs
plot(jkbeta.vec ~ index.obs, type="h",

xlab="Observation", ylab="Change in coefficient for age",
cex.axis=1.3, cex.lab=1.3)

abline(h=0)

The “identify” function allows us to identify the index numbers of select patients
by manually selecting them with a mouse:
identify(jkbeta.vec ~ index.obs)
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Fig. 7.3 Change in coefficient (dfbeta) residuals for age

The plot is shown in Fig. 7.3. There we see that no single patient changes the
estimate of the “age” coefficient by more than 0.003, which is less than 10% of
the value of that coefficient. Still, we see that patients 46 and 68 have the most
influence over the parameter estimate for age, and one may check these data points
to ensure that there are no errors in recording the data.

A more convenient way to obtain case deletion residuals is using the “residuals”
function with “type = ‘dfbeta’ ”. These residuals are approximations to case-
deletion residuals that require less numerical computation by eliminating all but
one interaction in the partial likelihood maximization. The simplest way to compute
such as residual is exactly as outlined above for case-deletion residuals, but one
starts the search for a maximum partial likelihood at ˇ D 0 and then only permit a
single iteration of the “coxph” function for each subject. Since the first iteration of
the coxph function yields an estimate of the coefficient that is near the final value,
these residuals should be nearly as effective at identifying influential subjects as the
case deletion residuals. These may be computed using the “residuals” function as
follows:

resid.dfbeta <- residuals(result.coxph, type="dfbeta")
n.obs <- length(ttr)
index.obs <- 1:n.obs
plot(resid.dfbeta[,4] ~ index.obs, type="h",

xlab="Observation", ylab="Change in coefficient")
abline(h=0)
identify(resid.dfbeta[,4] ~ index.obs)

The resulting dfbeta residuals plot (not shown) is nearly identical to that in
Fig. 7.3. While the reduction in computation time is of minimal value in most
applications, using the “residuals” function to obtain dfbeta residuals has the
advantage that it is slightly easier to use it to produce multiple plots for all of the
coefficients—one only need select the corresponding element of “resid.dfbeta” for
each coefficient in the model.
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A modification of the dfbeta residual is to standardize it by an estimate of its
standard error. In the residuals function, we obtain these residuals exactly as above,
but using the option “type = ‘dfbetas’ ”. In this example this refinement makes no
perceptible difference in which cases are found to be influential (see Exercise 7.1),
but potentially could be of value with other data sets.

7.2 Checking the Proportion Hazards Assumption

The proportional hazards assumption is key to the construction of the partial
likelihood, since it is this property that allows one to cancel out the baseline hazard
function from the partial likelihood factors. If one has a binary predictor variable,
such as experimental vs. standard treatment, what this assumption means is that the
hazard functions are proportional, and hence that the log-hazards are separated by
a constant at all time points. Similarly, a categorical variable with many levels will
result in parallel log hazard functions. This assumption is at best an approximation
in practice, and minor violations are unlikely to have major effects on inferences
on model parameters. For this reason, formal hypothesis tests of the proportional
hazards assumption are often of limited value. Still, it is useful to assess, in a
particular data set, if this assumption is reasonable, and what one can do if it is
not. Here we will examine some commonly used assessment methods.

7.2.1 Log Cumulative Hazard Plots

If we are comparing survival times between two groups, there is a simple plot that
can help us assess the proportional hazards assumption. Under this assumption, we
have

S1.t/ D ŒS0.t/!
exp.ˇ/

where exp.ˇ/ is the proportional hazards constant. Taking logs of both sides, we
have

log ŒS1.t/! D exp.ˇ/ # log ŒS0.t/! :

Since the survival functions are less than 1, their logarithms are negative. Thus, we
must negate them before we take a second logarithm,

log f" log ŒS1.t/!g D ˇ C log f" log ŒS0.t/!g :

The function g.u/ D log f" log.u/gis called a complementary log-log transforma-
tion, and has the effect of changing the range from .0; 1/ for u to ."1;1/ for



7.2 Checking the Proportion Hazards Assumption 95

1.0 1.5 2.0 2.5 3.0

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

Log time

C
om

pl
em

en
ta

ry
 lo

g−
lo

g 
su

rv
iv

al

Locally advanced
Metastatic

Fig. 7.4 Complementary log-log plot for the two pancreatic cancer groups

g.u/. A plot of g ŒS1.t/! and g ŒS0.t/! versus t or log.t/ will yield two parallel curves
separated by ˇ if the proportional hazards assumption is correct.

We may illustrate this with the pancreatic cancer data from Chap. 3. There we
found that the Prentice-modification test showed a stronger group difference than
did the log-rank test, and the suggestion was that this difference was caused by
non-proportional hazards. We can investigate the proportional hazards assumption
as follows, with results shown in Fig. 7.4.

> result.surv.LA <- survfit(Surv(pfs.month) ~ stage,
+ subset={stage == "LA"})
> time.LA <- result.surv.LA$time
> surv.LA <- result.surv.LA$surv
> cloglog.LA <- log(-log(surv.LA))
> logtime.LA <- log(time.LA)
> result.surv.M <- survfit(Surv(pfs.month) ~ stage,
+ subset={stage == "M"})
> time.M <- result.surv.M$time
> surv.M <- result.surv.M$surv
> cloglog.M <- log(-log(surv.M))
> logtime.M <- log(time.M)
> plot(cloglog.LA ~ logtime.LA, type="s", col="blue", lwd=2)
> lines(cloglog.M ~ logtime.M, col="red", lwd=2, type="s")
> legend("bottomright", legend=c("Locally advanced",
+ "Metastatic"), col=c("blue","red"), lwd=2)



96 7 Model Diagnostics

The curves are clearly not parallel. However, one problem with this approach is
that we don’t have a clear way to assess statistical significance. This is a critical
issue here due to the small sample size, particularly in the locally advanced group.

7.2.2 Schoenfeld Residuals

Schoenfeld residual plots provide a useful way to assess this assumption. To see
how they are derived, recall the partial log-likelihood function,
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and its derivative, which is the score function.

l0.ˇ/ D
X

i2D

8
<

:zi "
X

k2Ri

zk # p.ˇ; zk/

9
=

;;

where

p.ˇ; zk/ D
ezkˇ
P
j2Rk

ezjˇ
:

The Schoenfeld residuals are the individual terms of the score function, and each
term is the observed value of the covariate for patient i minus the expected value
E.Zi/ D Nz.ti/, which is a weighted sum, with weights given by pk.ˇ/, of the
covariate values for subjects at risk at that time. Each weight may be viewed as
the probability of selecting a particular person from the risk set at time ti. For an
estimate Ǒ, the residual for the ith failure time is

Ori D zi "
X

k2Ri

zk # p. Ǒ; zk/ D zi " Nz.ti/: (7.2.1)

A plot of theses residuals versus the covariate zi will yield a pattern of points
that are centered at zero, if the proportional hazards assumption is correct. Note that
these residuals are defined only for the failure (and not the censoring) times. If there
are multiple covariates, then one obtains a series of residuals for each covariate.

The “expected” value of the covariate at that time is the weighted sum (weighted
by pi). To clarify how we compute these, let us return to our simple example from
Chap. 3 comparing two sets of three observations. We first need Ǒ, the log hazard
ratio estimate, which we may compute as follows:
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> tt <- c(6, 7, 10, 15, 19, 25)
> delta <- c(1, 0, 1, 1, 0, 1)
> trt <- c(0, 0, 1, 0, 1, 1)
> result.coxph <- coxph(Surv(tt, delta) ~ trt)
> result.coxph$coef
trt -1.326

We see that Ǒ D "1:326. To compute he Schoenfeld residuals, we first compute the
weights as follows:

ti n0i n1i p.ˇ; zk D 0/ p.ˇ; zk D 1/

6 3 3 1
3C3e!1:326

e!1:326

3C3e!1:326

10 1 3 1
1C3e!1:326

e!1:326

1C3e!1:326

15 1 2 1
1C2e!1:326

e!1:326

1C2e!1:326

25 1 1 1
e!1:326

e!1:326

e!1:326 D 1

Next, we compute the expected values, and then the residuals:

ti E.Zi/ D
P
k2Ri

zk $ pk. Ǒ/ zi bri D zi # E.Zi/

6 3& 0& 1

3C3e!1:326 C 3& 1& e!1:326

3C3e!1:326 D 0:2098 0 #0.2098

10 1& 0& 1

1C3e!1:326 C 3& 1& e!1:326

1C3e!1:326 D 0:4434 1 0.5566

15 1& 0& 1

1C2e!1:326 C 2& 1& e!1:326

1C2e!1:326 D 0:3468 0 #0.3468

25 1 1 0

At the first failure time (ti D 6) there are three at risk in the control group
and three in the treatment group. The expected value of the covariate is weighted
sum of the three control covariate values, zi D 0, the weights being 1=Œ3 C
3 exp."1:326/!, and the three treatment covariate values, zi D 1, with weights
exp."1:326/=Œ3 C 3 exp."1:326/!. This works out to 0.2098, and the residual is
0 " 0:2098 D "0:2098. The remaining residuals are computed analogously. These
residuals may be computed in R as follows:
> residuals(result.coxph, type="schoenfeld")

6 10 15 25
-0.2098004 0.5566351 -0.3468347 0.0000000

Gramsch and Therneau [25] proposed scaling each residual by an estimate of its
variance. This scaled residual may be conveniently approximated as follows:

r!
i D ri # d # var

#
Ǒ
$
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where d is the total number of deaths, and var
#
Ǒ
$
is the variance of the parameter

estimate. (If there is more than one covariate, then this is a covariance matrix.) We
may compute these as follows:

> resid.unscaled <- residuals(result.coxph, type="schoenfeld")
> resid.scaled <- resid.unscaled*result.coxph$var*sum(delta)
> resid.unscaled

6 10 15 25
-0.2098004 0.5566351 -0.3468347 0.0000000
> resid.scaled
[1] -1.313064 3.483776 -2.170712 0.000000

Therneau and Gramsch showed that, if the hazard ratio is a function of t, ˇ.t/,
then the expected value of the scaled residuals is

E.r!
i / $ ˇ C ˇ.t/

so that an approximate estimate of ˇ.t/ may be obtained by adding the estimate Ǒ
from the Cox proportional hazards model (which assumes proportional hazards) to
the standardized residuals,

> resid.scaled + result.coxph$coef
[1] -2.639193 2.157647 -3.496841 -1.326129

and plotting these versus time, or the log of time. This may be done more
conveniently using the “cox.zph” function, which yields the same residuals directly,

> resid.sch <- cox.zph(result.coxph)
> resid.sch$y

trt
6 -2.639193
10 2.157647
15 -3.496841
25 -1.326129

Here we see that the “y” component of “resid.sch” yields the sum of the scaled
residuals and the parameter estimate from the Cox model.

The benefits of using Schoenfeld residuals become especially apparent when we
apply themethod to the pancreatic data.We compute the scaled Schoenfeld residuals
as follows:

> result.coxph <- coxph(Surv(pfs.month) ~ stage)
> result.sch.resid <- cox.zph(result.coxph, transform="km")

The “transform” option specifies that the time axis is scaled to conformwith Kaplan-
Meier-transformed time. We may plot the residuals, and a smooth curve through
them using a technique called “loess”, as follows (Fig. 7.5):

> plot(result.sch.resid)

The shape of the smoothed (loess) curve is an estimate of the difference
parameter as a function of time, which appears to be constant or slightly increasing
initially, followed by a steady decline after about 2 months. Also given is a 95%
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Fig. 7.5 Schoenfeld residual plot for the pancreatic cancer data

confidence band for the smooth curve. The hypothesis test for a constant ˇ, which
is a test of the proportional hazards function, may be obtained by fitting a straight
line to the residuals plotted versus, yielding a p-value of 0.0496:

> result.sch.resid
rho chisq p

stageM -0.328 3.86 0.0496

Alternatively, variations of this test may be obtained by plotting ˇ.t/ versus time or
versus other transformations of time. The “cox.zph” function offers a “rank” option,
where the time axis is ordered by the ranks of the times, and an “identity” option,
where the time variable is untransformed. The results using these transformations
are as follows:

> cox.zph(result.coxph, transform="rank")
rho chisq p

stageM -0.33 3.89 0.0486
> cox.zph(result.coxph, transform="identity")

rho chisq p
stageM -0.197 1.39 0.239

The rank transformation yields a similar p-value to what we found with the “km”
transformation. The “identity” transform results in a much higher p-value. This is
most likely due to the fact that deaths occur more sparsely at larger times, and as
a result residuals at these larger times hold a great deal of influence on the fitted
regression line. Thus, this transform is likely not a preferred one when failure
times are not uniformly spaced over time. A wide range of tests for proportional
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hazards that have been developedmay be viewed as linear regressions of Schoenfeld
residuals versus various transformations of time. See Therneau and Grambsch [68]
for further discussion of this point.

7.3 Additional Note

A thorough exposition of martingale residuals from a counting process point of view
may be found in Chaps. 4 and 5 of Therneau and Grambsch [68]. Additional details
are in chapter 11 of Klein and Moeschberger [36].

Exercises

7.1. Consider the case deletion and dfbeta residuals discussed in Sect. 7.1.2. For
each of the covariates in the final pharmacoSmokingmodel (grp, employment levels
2 and 3 vs. 1, and age), plot the case deletion residuals versus the dfbeta residuals.
Also plot the “dfbeta” residuals versus the “dfbetas” residuals. Do you see any
differences?

7.2. Consider the CXCL17 model you fitted in Exercise 6.1. Check the functional
form using martingale residuals, and use case-deletion residuals to identify any
outlying points. Also use Schoenfeld residuals to check the proportional hazards
assumption.



Chapter 8
Time Dependent Covariates

8.1 Introduction

The partial likelihood theory for survival data, introduced in Chap. 5, allows one to
model survival times while accommodating covariate information. An important
caveat to this theory is that the values of the covariates must be determined at
time t D 0, when the patient enters the study, and remain constant thereafter. This
issue arises with survival data because such data evolve over time, and it would be
improper to use the value a covariate to model survival information that is observed
before the covariate’s value is known. To accommodate covariates that may change
their value over time (“time dependent covariates”), special measures are necessary
to obtain valid parameter estimates. An intervention that occurs after the start of
the trial, or a covariate (such as air pollution exposure) that changes values over the
course of the study are two examples of time dependent variables.

The rule is clear: we cannot predict survival using covariate values from
the future. Unfortunately, this deceptively simple principle can ensnare even an
experienced researcher. An oft cited and extensively studied example of this is the
Stanford heart transplant study, published by Clark et al. in the Annals of Internal
Medicine in 1971[9]. This study of the survival of patients who had been enrolled
into the transplant program appeared to show that patients who received heart
transplants lived significantly longer than those who did not. The data are in the
“survival” package in a data set named “jasa” after a journal article that discussed
analysis methods for the data. Here is a naive analysis:

> result.heart <- coxph(Surv(futime, fustat) ~ transplant + age +
+ surgery, data=jasa)
> summary(result.heart)

n= 103, number of events= 75
coef exp(coef) se(coef) z Pr(>|z|)

transplant -1.71711 0.17958 0.27853 -6.165 7.05e-10 ***
age 0.05889 1.06065 0.01505 3.913 9.12e-05 ***

© Springer International Publishing Switzerland 2016
D. Moore, Applied Survival Analysis Using R, Use R!,
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surgery -0.41902 0.65769 0.37118 -1.129 0.259
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The key covariate is “transplant”, which takes the value 1 for those patients who
received a heart transplant and 0 for those who did not. The estimate of the transplant
coefficient is "1:717, and the p-value is very small. This result may appear to
indicate (as it did to Clark et al. in 1971) that transplants are extremely effective
in increasing the lifespan of the recipients. Soon after publication of this result,
Gail [21], in an article in the same journal, questioned the validity of the result,
and numerous re-analyses of the data followed. The problem here is that receipt of
a transplant is a time dependent covariate; patients who received a transplant had
to live long enough to receive that transplant. Essentially, the above analysis only
shows that patients who live longer (i.e. long enough to receive a transplant) have
longer lives than patients who don’t live as long, which of course is a tautology.

A simple fix is to define a “landmark” time to divide patients into two groups.
In this approach, patients who receive the intervention prior to the landmark go
into the intervention group and those who did not are placed in the comparison
group. Key requirements of this approach are that (a) only patients who survive up
to the landmark are included in the study, and (b) all patients (in particular, those in
the comparison group) remain in their originally assigned group regardless of what
happens in the future, i.e., after the landmark. For example, for the heart transplant
data, we may set a landmark at 30 days. We first select those patients who lived at
least 30 days (79 of the 103 patients lived this long). Of these 79 patients, 33 had a
transplant within 30 days, and 46 did not. Of these 46, 30 subsequently had a heart
transplant, but we still count them in the “no transplant within 30 days” group. In
this way we have created a variable (we shall call it “transplant30”) which has a
fixed value (that is, it does not change over time) for all patients in our set of 30-day
survivors. Here is how we set things up:

> ind30 <- jasa$futime >= 30
> transplant30 <- {{jasa$transplant == 1} & {jasa$wait.

time < 30}}
> summary(coxph(Surv(futime, fustat) ~ transplant30 + age +
+ surgery, data=jasa, subset=ind30 ))

n= 79, number of events= 52

coef exp(coef) se(coef) z Pr(>|z|)
transplant30TRUE -0.04214 0.95874 0.28377 -0.148 0.8820
age 0.03720 1.03790 0.01714 2.170 0.0300 *
surgery -0.81966 0.44058 0.41297 -1.985 0.0472 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The coefficient for transplant30 (a true/false indicator for transplant within the
first 30 days) is "0:042, and the p-value is 0.88, which is not at all statistically
significant. This “landmark method” analysis indicates that there is little or no
difference in survival between those who got a transplant and those who did
not. Although the landmark method is straightforward to implement, we have no



8.1 Introduction 103

Table 8.1 Sample of six
patients from the Stanford
heart transplant data set

id wait.time futime fustat transplant

2 – 5 1 0
5 – 17 1 0
10 11 57 1 1
12 – 7 1 0
28 70 71 1 1
95 1 15 1 1

Fig. 8.1 Sample of six
patients from the Stanford
heart transplant data set. In
this plot, death is denoted by
an “X”, and the time of
transplant (for Patients 1, 3,
and 6) by a solid dot. In the
plot on the right, the timelines
of patients who received a
transplant are split into pre-
and post-transplant
components
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guidance as to when to set the landmark. Why 30 days? Why not 15? Or why
not 100? There is no clear way to answer this question. Furthermore, this 30-day
landmark method requires that we discard almost a quarter of the patients from the
analysis. Fortunately there is a better way, which is to directly model the variable
“transplant” as a time dependent variable. This can be done in the framework
of the classical Cox proportional hazards model, but important adjustments are
required to obtain unbiased estimates. To see how to do this, it is helpful to look
at a small data set, which we construct by selecting an illustrative subset of six
patients, three of which had a transplant and three who did not (Table 8.1). We may
plot them in Fig. 8.1.

We may set up the data in R as follows:
id <- 1:nrow(jasa)
jasaT <- data.frame(id, jasa)
id.simple <- c(2, 5, 10, 12, 28, 95)
heart.simple <- jasaT[id.simple,c(1, 10, 9, 6, 11)]

In this simple data set, all of the patients died within the follow-up time (stat = 1 for
all patients). We may model the data incorrectly (ignoring the fact that “transplant”
is time dependent) as follows:
> summary(coxph(Surv(futime, fustat) ~ transplant,
+ data=heart.simple))

n= 6, number of events= 6

coef exp(coef) se(coef) z Pr(>|z|)
transplant -1.6878 0.1849 1.1718 -1.44 0.15
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To do this correctly, we need to modify the partial likelihood function to
accommodate these types of variables. Essentially, at each failure time, there are
a certain number of patients at risk, and one fails, as we discussed in Chap. 5.
However, the contributions of each subject can change from one failure time to the
next. The hazard function is given by h.t/ D h0.t/ezk.ti/ˇ, where the covariate zk.ti/
is the value of the time-varying covariate for the kth subject at time ti. The modified
partial likelihood, in general, is as follows:

L.ˇ/ D
DY

iD1

 iiP
k2Ri

 ki

where  ki D ezk.ti/ˇ. In previous chapters the covariates were fixed at time 0, so
that zk.ti/ D zk for all failure times ti, and the denominator at each time could be
computed by, as time passes, successively deleting the value of  i for the subject
(or subjects) that failed at that time. With a time dependent covariate, by contrast,
the entire denominator has to be recalculated at each failure time, since the values
of the covariates for each subject may change from one failure time to the next. For
example, from Table 8.1 and Fig. 8.1, we see that Patient #2 is the first to fail, at
t D 5. At this time, all six patients are at risk, but only one, Patient #2, has had
a transplant at this time. So the denominator for the first factor is 5 C eˇ, and the
numerator is 1, since it was a non-transplant patient who died. Patient 12 is the next
to die, at time t D 7, and none of the patients in the risk set have changed their
covariate value. But when the third patient dies, Patient #95, at t D 15, one of the
other patients (#10) has switched from being a non-transplant patient to one who
has had one. There are now four patients at risk, of which two (#10 and #95) are
transplant patients. The denominator is thus 2C 2eˇ and the numerator is eˇ , since
it was a transplant patient that died. The full partial likelihood is

L.ˇ/ D 1

5C eˇ
# 1

4C eˇ
# eˇ

2C 2eˇ
# 1

2C eˇ
# eˇ

1C eˇ
# e

ˇ

eˇ
: (8.1.1)

We may use the “coxph” function to accommodate time dependent variables
by first pre-processing the data into what we shall call “start-stop” format. The
validity of this approach may be derived from the counting process theory of partial
likelihoods [68]. Essentially, this approach divides the time data for patients who
had a heart transplant into two time periods, one before the transplant and one after.
For example, Patient #10 was a non-transplant patient from entry until day 11. Since
that patient received a transplant at that time, the future for that patient, had he or she
not received a transplant, is unknown. Thus, we censor that portion of the patient’s
life experience at t D 11. Following the transplant, we start a new record for Patient
#10. This second piece of the record is left-truncated at time t D 11, and a death is
recorded at time t D 57. It is left-truncated because that patient’s survival experience
with the transplant starts at that point. For the first part of this patient’s experience,
the “start” time is 0, and the “stop” time is 11, which is recorded as a censored
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observation. For the second piece of that patient’s experience, the start time is 11
and the stop time is 57. Thus, to put the data in start-stop format, the record of every
patient with no transplant is carried forward as is, whereas the record of each patient
who received a transplant is split into pre-transplant and post-transplant records.
The R survival package includes a function “tmerge” to simplify this conversion.
We may transform the “heartSimple” data set into start/stop format as follows:
> sdata <- tmerge(heart.simple, heart.simple, id=id,
+ death=event(futime, fustat),
+ transpl=tdc(wait.time))
> heart.simple.counting <- sdata[,-(2:5)] # drop columns 2

through 5
> heart.simple.counting

id tstart tstop death transpl
1 2 0 5 1 0
2 5 0 17 1 0
3 10 0 11 0 0
4 10 11 57 1 1
5 12 0 7 1 0
6 28 0 70 0 0
7 28 70 71 1 1
8 95 0 1 0 0
9 95 1 15 1 1

These data are diagrammed in Fig. 8.2. Once the data are in this format, we may
use the coxph function as we did with left-truncated data:
> summary(coxph(Surv(tstart, tstop, death) ~ transpl,
+ data=heart.simple.counting))

n= 9, number of events= 6

coef exp(coef) se(coef) z Pr(>|z|)
transpl 0.2846 1.3292 0.9609 0.296 0.767

Inspection of Fig. 8.2, when compared to Fig. 8.1, reveals that the partial likelihood
is identical to that in Eq. 8.1.1.

We may apply this method to the full heart transplant data in the same way as
described in Therneau and Crowson (2015) [67]. In the following, we define “tdata”

Fig. 8.2 Plot of sample of
heart transplant patients in
start-stop counting process
format
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as a temporary data set, leaving off the dates and transplant-specific covariates. Also,
we add 0.5 to the death time on day 0, and break a tied transplant time.

> tdata <- jasa[, -c(1:4, 11:14)]
> tdata$futime <- pmax(.5, tdata$futime)
> indx <- {{tdata$wait.time == tdata$futime} &
+ !is.na(tdata$wait.time)}
> tdata$wait.time[indx] <- tdata$wait.time[indx] - .5
> sdata <- tmerge(tdata, tdata, id=1:nrow(tdata),
+ death = event(futime, fustat),
+ trans = tdc(wait.time))
> jasa.counting <- sdata[,c(7:11, 2:3)]
> head(jasa.counting)

id tstart tstop death trans surgery age
1 1 0 49 1 0 0 30.84463
2 2 0 5 1 0 0 51.83573
3 3 0 15 1 1 0 54.29706
4 4 0 35 0 0 0 40.26283
5 4 35 38 1 1 0 40.26283
6 5 0 17 1 0 0 20.78576

Patients 1, 2, and 3 did not have a transplant, so “tstart” takes the value 0 for all
three, and “tstop” are the death times for those patients. For Patient 4, who had
a heart transplant on day 35 and died on day 38, there are two records for each
period of this patient’s experience, as described above. The results of fitting a time
dependent Cox model are as follows:

> summary(coxph(Surv(tstart, tstop, death) ~ trans + surgery +
+ age, data=jasa.counting))

n= 170, number of events= 75
coef exp(coef) se(coef) z Pr(>|z|)

trans 0.01405 1.01415 0.30822 0.046 0.9636
surgery -0.77326 0.46150 0.35966 -2.150 0.0316 *
age 0.03055 1.03103 0.01389 2.199 0.0279 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

We now see, as with the landmark analysis given earlier, that there is no evidence
that receiving a heart transplant increases survival. This method is valid even though
(unlike with the landmark method) no data are discarded.

8.2 Predictable Time Dependent Variables

An alternative way of modeling non-proportional hazards is to allow the coefficient
for a particular covariate to vary with time. Specifically, if there is only one
covariate, we have h.t/ D h0.t/ezkˇ.t/, where now it is ˇ that varies with time (rather
than the covariate zk as in the previous section). Characterizing the functional form
of the non-proportional hazards is a much harder problem than simply testing for
a difference, as we did in Chap. 4. Although here it is the coefficient ˇ that is
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changing rather than the covariate z, we may model this by defining a new time
dependent variable with fixed coefficients that achieves the same effect. Because the
time-varying relationship in the model is defined by the analyst, we refer to the
variable as a predictable time dependent variable. In this section we will see how
to use the pattern of Schoenfeld residuals to help us identify an appropriate time
dependent function, and then model it using the time transfer function in the survival
package.

8.2.1 Using the Time Transfer Function

Consider again the pancreatic data first discussed in Sect. 4.1. There we found that a
log-rank test comparing the two groups did not yield a statistically significant result.
Here we need to define a numerical (0/1) group variable, and fit the following model
using the “pancreatic2” data in the “asaur” package:
> stage.n <- rep(0, nrow(pancreatic2))
> stage.n[pancreatic2$stage == "M"] <- 1
> result.panc <- coxph(Surv(pfs) ~ stage.n)
> result.panc

coef exp(coef) se(coef) z p
stage.n 0.593 1.81 0.401 1.48 0.14

Likelihood ratio test=2.43 on 1 df, p=0.119

The p-value (0.14) for the likelihood ratio test, which is similar to that from the log-
rank test in Sect. 4.1, shows little evidence of a group difference, as we saw there.
Later in that section a plot of Schoenfeld residuals indicated that the hazard ratio
appears not to be constant. One way of dealing with this was to use the Prentice
modification of the Wilcoxon test (using “rho = 1” in the “survdiff” function).
An alternative is to accommodate the changing hazard ratio by defining a time
dependent covariate, g.t/ D z # log.t/. In the survival package, the “time transfer”
function “tt” allows us to do this. We define the “tt” function within the coxph
function, and this function computes the necessary terms for the coxph fitting
function, as follows:
> result.panc2.tt <- coxph(Surv(pfs) ~ stage.n + tt(stage.n),
+ tt=function(x,t, ...) x*log(t))
> result.panc2.tt

coef exp(coef) se(coef) z p
stage.n 6.01 407.339 3.060 1.96 0.050
tt(stage.n) -1.09 0.338 0.589 -1.84 0.065

Likelihood ratio test=6.33 on 2 df, p=0.0423

The fitted function is ˇ.t/ D 6:01 " 1:09 # log.t/. Here we see that, while the
p-value for the time dependent variable is 0.065, the likelihood ratio test for both
stage and the time dependent variable together is 0.0423. This indicates that the
group indicator combined with a time-varying hazard ratio yields evidence of a
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group difference. This is consistent with what we found in Sect. 4.1 using the
weighted log-rank test with weights defined using the option “rho = 1”. We may
visually check this function by constructing a Schoenfeld residual plot (this time
using a logarithmic transform scale), and then plotting the fitted function on the
same plot,

result.sch.resid <- cox.zph(result.panc,
transform=function(pfs) log(pfs))

plot(result.sch.resid)
abline(coef(result.panc2.tt), col="red")

Here the “transform” option in “cox.zph” is a log function defined within the
function call. (As an alternative, one could define this simple function outside of
“cox.zph” and then specify it by name within “cox.zph”)

In this plot, the curved line is a loess (smooth) curve through the residuals. The
tick marks on the horizontal axis follow a logarithmic scale, as specified by the
“transform” argument in the “coxph.zph” function. The red line is from the fitted
time transfer function, not from a fit to the residuals; it is a log function whose plot
appears straight because the horizontal axis is a logarithmic scale. This time transfer
function indicates that overall, the log hazard ratio decreases over time (Fig. 8.3).

Other time dependent functions may not yield this result. For example, if g.t/ D
z # t, we get a non-significant result (p-value = 0.102) for the effect of “stage.n” on
survival:

> coxph(Surv(pfs) ~ stage.n + tt(stage.n),
+ tt=function(x,t, ...) x*t)

coef exp(coef) se(coef) z p
stage.n 1.27810 3.590 0.66103 1.93 0.053
tt(stage.n) -0.00366 0.996 0.00253 -1.44 0.150

Likelihood ratio test=4.56 on 2 df, p=0.102
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Fig. 8.3 Schoenfeld residual plot for the pancreatic data, using a log scale for time. The curved
line is from a loess curve fitted to the residual plot, while the straight red line is based on the fitted
time dependent estimate of ˇ.t/ using the time transfer facility
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Thus, it is important to identify a hazard-ratio function that well-approximates the
actual changing hazard ratio.

8.2.2 Time Dependent Variables That Increase
Linearly with Time

A common source of confusion is whether or not one could treat patient age as a time
dependent variable. We have seen the use of “age at entry” as a covariate in survival
analysis, and this is a fixed quantity at time 0; the age of a patient at that time is fixed
by definition. But we know that the age of a patient increases in lock step with time
itself, so can’t we treat increasing age as a time dependent variable? The answer
is yes, but doing so has no effect on the model. We could illustrate this with any
survival data set that includes age as a covariate; for convenience, we shall choose
an example from the “lung” data set in the survival package. This data set consists
of survival times in days of 228 patients with advanced lung cancer. A number of
covariates are included, but we shall focus on “age” to illustrate what happens when
it is treated as time dependent. First, here is the result of fitting a model to this data
with “age” (age at entry into the clinical trial) as the sole covariate:

> coxph(Surv(time, status==2) ~ age, data=lung)

coef exp(coef) se(coef) z p
age 0.0187 1.02 0.0092 2.03 0.042

Likelihood ratio test=4.24 on 1 df, p=0.0395

We see that the log hazard increases with increasing age, with a p-value of 0.042.
Now let us define “age” as a time dependent variable in the time transfer function,
noting that “age” is in years, and the survival time, being measured in days, should
be converted to years:

> coxph(Surv(time, status==2) ~ tt(age), data=lung,
+ tt=function(x, t, ...) {
+ age <- x + t/365.25
+ age})

coef exp(coef) se(coef) z p
tt(age) 0.0187 1.02 0.0092 2.03 0.042

Likelihood ratio test=4.24 on 1 df, p=0.0395

There is no change at all in the fitted values. To see why this happens, let us denote
age at entry into the trial by z.0/ and current age by z.t/ D z.0/C t. Then the hazard
function is given by

h.t/ D h0.t/eˇz.t/ D
˚
h0.t/eˇt

)
# eˇz.0/:

If one inserts this expression into the partial likelihood in Eq. 5.4.1, the time
dependent part, eˇt, appears in both the numerator and the denominator of each
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factor, as does the baseline hazard. Both cancel, leaving only the age at entry
variable z.0/. Thus, the coefficientˇ for the time dependentmodel is identical to that
from the non-time dependent model. The same happens with any time dependent
covariate that increases in lock step with time; continuous and unchanging exposure
to a toxic substance would be a common example. However, if the variable doesn’t
change at a constant rate, this equivalence no longer holds. A simple example would
be to use the log of current age, where {current age} = {age at entry} + {survival
time}. See Exercise 8.5 for details.

8.3 Additional Note

Further details concerning time dependent covariates and the time-transfer function
may be found in the vignette distributed with the R package on this topic (Therneau
and Crowson [67]).

Exercises

8.1. Encode the log of the partial likelihood in Eq. 8.1.1 into an R function, and
find the maximum using “optim” (as in Sect. 5.2). Verify that the result matches that
from the “coxph” procedure in Sect. 8.1.

8.2. Consider the following synthetic time dependent data:

id wait.time futime fustat transplant

1 12 58 1 1
2 – 8 1 0
3 – 37 1 0
4 18 28 1 1
5 – 35 1 0
6 17 77 1 1

First model the data ignoring the wait time. Then transform the data into start-
stop format, then use that form of the data to model “transplant” as a time dependent
covariate. Write out the partial likelihood for these data, and use this partial
likelihood to find the maximum partial likelihood estimate of the coefficient for
transplant. Compare your answer to the results of “coxph”.

8.3. For the pancreatic data, construct a Schoenfeld residual plot and loess smooth
curve for an identity transform, using transform = “identity” in the coxph.zph
function. Then fit a linear time transfer function, as in Sect. 8.2.1, and plot the fitted
line on the residual plot.
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8.4. Again using the pancreatic data, construct the residual plot and plot the transfer
function for g.t/ D log.t " 30/. How does the evidence for a treatment effect differ
from the result in Sect. 8.2.1 using g.t/ D log.t " 30/?

8.5. Using the lung data as in Sect. 8.2.2, compute log(age) and fit a Cox model
using this as a fixed covariate. Then fit log(age) as a time dependent variable, using
the time transfer function. Do the results differ? Why?



Chapter 9
Multiple Survival Outcomes
and Competing Risks

Until now the type of survival data we have considered has, as an endpoint, a
single cause of death, and the survival times of each case have been assumed to
be independent. Methods for analyzing such survival data will not be sufficient if
cases are not independent or if the event is something that can occur repeatedly.
An example of the first type would be clustered data. For instance, one might be
interested in survival times of individuals that are in the same family or in the same
unit, such as a town or school. In this case, genetic or environmental factors mean
that survival times within a cluster are more similar to each other than to those from
other clusters, so that the independence assumption no longer holds. In the second
case, if the event of interest is, for example, the occurrence of a seizure, the event
may repeat indefinitely. Then we would have multiple times per person. Special
methods are needed to handle these types of data structures, which we shall discuss
in Sect. 9.1. A different situation arises when only the first of several outcomes is
observable, a topic we will take up in Sect. 9.2.

9.1 Clustered Survival Times and Frailty Models

Example 9.1. Struewing et al. [64], in the Washington Ashkenazi study, examined
the effect of mutations of the BRCA gene on risk of breast cancer in an Ashkenazi
Jewish population. The original data set consisted of a set of probands who were
volunteers of Ashkenazi ancestry. Each proband was genotyped for the BRCA
breast cancer gene to determine if she was a mutation carrier. The proband was
also interviewed by the investigators to determine if she had any female first-degree
relatives, and the relatives age at the time she developed breast cancer or current age
if that relative had never been diagnosed with breast cancer. A subset of this data set
was constructed to use as an example. This subset consists of 1,960 families with
two or more female relatives; for those with three or more female relatives, two were

© Springer International Publishing Switzerland 2016
D. Moore, Applied Survival Analysis Using R, Use R!,
DOI 10.1007/978-3-319-31245-3_9

113



114 9 Multiple Survival Outcomes and Competing Risks

selected at random. This data set, “askenazi”, is in the “asaur” package. The subset
was constructed so that it contains information on the age of onset of breast cancer
(or current age for women without breast cancer) for the two female relatives, the
BRCA mutation status of the proband, and the age of onset (or current age) of two
female relatives. Following is a sample (sets 1, 9, and 94) of the family sets. We
select them using the “%in” operator, which indicates set membership.

> ashkenazi[ashkenazi$famID %in% c(1, 9, 94), ]
famID brcancer age mutant

1 1 0 73 0
2 1 0 40 0
7 9 0 89 0
8 9 1 60 0
87 94 1 44 1
88 94 0 45 1

Family #1 consists of two first degree female relatives (most likely a mother and
daughter), ages 73 and 40. Neither of them has ever had breast cancer, nor does
their proband have a BRCA mutation. In Family #9, one relative was 89 with no
history of breast cancer, and the other relative had breast cancer at age 60. Their
proband was not a BRCA mutation carrier. In Family #94 one relative had breast
cancer at age 44 and the other, a sister, was 45 and had never had breast cancer.
The proband for these sisters was a mutation carrier. Note that, since the variable
“mutant” refers to a common proband for each family, both entries must either be
0 or 1, according to whether the proband was not a carrier (mutant = 0) or was a
carrier (mutant = 1). The survival variable is age of onset (or age at interview for
those with no history of breast cancer), the censoring variable is “brcancer” (1 if a
breast cancer case, 0 if not), and the covariate of interest is “mutant”, whether or
not the relative’s proband was a BRCA mutation carrier. A concern is that family
members may share environmental and genetic characteristics (other than BRCA
mutation status), so it may not be appropriate to treat them as independent.

Example 9.2. The Diabetic Retinopathy Study [33, 41, 44, 57] was a randomized
clinical trial conducted to evaluate the effect of laser photo-coagulation versus
control on time to onset of blindness. For each patient on eye was randomly assigned
to receive the laser treatment and the other was untreated. The time of blindness was
defined as the first occurrence of visual acuity less than 5/100 at two consecutive
examinations; any eye that did not meet this criterion was treated as a censored
observation. A secondary objective was to determine if diabetes type (early or late
onset) affected time to blindness, and whether this influenced the effectiveness of
the laser treatment. The data are in “diabetes” in the “timereg” package, which must
be downloaded and installed. Here are the first few rows:

> library(timereg)
> head(diabetes)

id time status trteye treat adult agedx
1 5 46.24967 0 2 1 2 28
2 5 46.27553 0 2 0 2 28
3 14 42.50684 0 1 1 1 12
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4 14 31.34145 1 1 0 1 12
5 16 42.30098 0 1 1 1 9
6 16 42.27406 0 1 0 1 9

For example, Patient #5 was observed for 46 months, and didn’t lose sight in either
eye. Patient #14 lost sight in the untreated eye (treat D 0 and status D 1) at 31
months, but still had sight in the treated eye (treatD 1 and statusD 0) at 42 months.
And Patient #16 had not lost sight in either eye at 42 months.

9.1.1 Marginal Survival Models

In the marginal approach, the proportional hazards assumption is presumed to hold
for all subjects, despite the structure in the data due to clusters. With this approach,
the parameter estimates are obtained from a Cox proportional hazards model as
described in earlier chapters, ignoring the cluster structure. Where the clusters come
into play is in computing standard errors for the parameter estimates. This model is
described in detail in the pair of articles Wei, Lin, and Weissfeld [76] and Lin and
Wei [45]. Suppose first that there is only one covariate, and its estimate is Ǒ. We shall
denote the estimate of its variance (from the Cox model, ignoring the clustering) by
OV , and the standard error of the estimate is then OV1=2 D

p
OV . This is the estimate of

the standard error assuming that all subjects are independent. To obtain a correction
to this variance that accounts for the clustering structure, we need to define a score
residual for subject j in cluster i:

sij D ıij
!
zij " Nz.tij/

"
"
X

tu%tij

!
zi " Nz.tij/

"
eziˇ

h
OH0.tu/ " OH0.tu#1/

i

Note that the first part of this residual is the Schoenfeld residual given in Eq. 7.2.1.
We formulate a quantity C defined by

C D
GX

iD1

niX

jD1

niX

mD1
sijsim:

We define a cluster-adjusted variance by V! D OV2 #C and a cluster-adjusted standard
error for Ǒ by

p
V!:

If there are q covariates, then Ǒ is a vector, and the covariance matrix for Ǒ from
the Cox model is given by V , and the standard errors (based on the standard Cox
model assuming independent subjects) is the square root of the diagonal elements
of V , i.e. se

#
Ǒ
$
D Œdiag.V!1=2.
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The score residuals s
Qij

are 1 ! q matrices, the quantity C is now a q by q matrix
given by C D PG

iD1
Pni

jD1
Pni

mD1 sQ
0
ijsQim

; and the cluster-adjusted covariance matrix
is given by V! D OVC OV . Since the empirical covariance matrix C is sandwiched
between two copies of OV , this estimate is often referred to as the “sandwich”
estimator. The adjusted standard errors of the parameter estimate Ǒ is given by
se
#
Ǒ
$

D Œdiag.V!/!1=2. Summaries of the theory may be found in Klein and
Moeschberger [36] and in Hosmer, Lemeshow and May [32].

9.1.2 Frailty Survival Models

Let us begin with a review of how we set up a likelihood function for survival data,
and we will write it in a form that allows us to generalize to clustered survival data.
Suppose for now that we have independent survival data, with the ith observation
given by .ti; ıi; zi/. The likelihood function may be written as follows, using the fact
that h.t/ D f .t/=S.t/ and the proportional hazards assumption h.t; ˇ/ D h0.t/eziˇ:

L.ˇI zi/ D
nY

iD1
f .ti; ˇ/ıi S.ti; ˇ/1#ıi D

nY

iD1
h.ti; ˇ/ıi S.ti; ˇ/:

This may be re-expressed as

L.ˇI zi/ D
nY

iD1

!
h0.ti/eziˇ

"ıi # e#H0.ti/eziˇ

where H0.ti/ D "
´ ti
0 h0.v/dv is the baseline cumulative hazard.

Now suppose that the survival times are organized into clusters; common
examples include families, schools, or other institutions. We suppose that subjects
in the same cluster are more alike in their survival times than are subjects from
different clusters. One way to accommodate such structure in the data is to assign
each individual in a cluster a common factor known as a frailty or, alternatively, as a
random effect. We denote the frailty for all individuals in the ith cluster by !i. Then
we may express the hazard function for the jth subject in the ith cluster as follows:

hij.tij/ D h0.tij/ # !iezijˇ:

The !i vary from one cluster to another, and a common model that governs this
variability is a gamma distribution,

g.!; )/ D !
1
) #1e# !

)

$
'
1
)

(
)
1
)

:
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Suppose that, in addition to the survival and censoring variables, we could somehow
observe the frailties !i. Then the joint likelihood for the jth subject in the ith cluster
would be

Lij.ˇ; ) I!i; tij; ıij; zij/ D g.!i; )/ #
!
h0.tij/!iezijˇ

"ıij # e#H0.tij/!ie
zijˇ
;

and the full likelihood would be

L.ˇ; )/ D
GY

iD1

niY

jD1
Lij.ˇ; ) I!i; tij; ıij; zij/

Still assuming that we could observe the frailties !i, we could obtain maximum
likelihood estimates for ˇ and ) by numerically maximizing this function. In
actuality, however, the frailties are latent variables, that is, variables that we presume
to exist but which we cannot directly observe. Thus, to obtain estimates of ˇ and
) we need to use a multistage procedure called the EM (expectation-maximization)
algorithm. This algorithm alternates between finding expected values for the frailties
based on current estimates of ˇ and ) and using these expected values to find
updated estimates for ˇ and ) . The algorithm alternates between these two steps
until convergence. If we use a parametric distribution for f .t; ˇ/, setting up the EM
algorithm is fairly direct. Generalizing this to the Cox proportional hazards model
is more complex, in part because we also have to obtain updated estimates for the
baseline hazard at each step. See Klein and Moeschberger [36] and Therneau and
Grambsch [68] for details.

An alternative to using the gamma distribution to model the frailties is to write
!i D e&ui , where ui has a standard normal distribution. This alternative model puts
the random effects and fixed effects on the same level,

hij.tij/ D h0.tij/ # ezijˇCui& :

The EM algorithm for estimation of ˇ and & proceeds as outlined above.

9.1.3 Accounting for Family-Based Clusters
in the “ashkenazi” Data

Let us first consider the “ashkenazi” data in the “asaur” package. Here we fit a
standard Cox proportional hazards model to predict the age of onset of breast cancer
depending on the carrier status of the proband:
> result.coxph <- coxph(Surv(age, brcancer) ~ mutant,
+ data=ashkenazi)
> summary(result.coxph)

n= 3920, number of events= 473

coef exp(coef) se(coef) z Pr(>|z|)
mutant 1.1907 3.2895 0.1984 6.002 1.95e-09 ***
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The log partial likelihood from this model is obtained as follows:
result.coxph$loglik
[1] -3579.707 -3566.745

The first component is from the model with no covariates and the second from the
model with “mutant” included as a predictor. The likelihood ratio test statistic is
twice the difference,G2 D 2."3566:745C 3579:707/D 25:924. This is compared
to a chi-square distribution with 1 degree of freedom, resulting in a very small
p-value, confirming the importance of including the mutational status of the proband
in the model.

To accommodate the clustering using the Lin-Wei method [45], we use the
“cluster” term in the model specification, as follows:
> result.coxph.cluster <- coxph(Surv(age, brcancer) ~ mutant +
+ cluster(famID), data=ashkenazi)
> summary(result.coxph.cluster)

n= 3920, number of events= 473

coef exp(coef) se(coef) robust se z Pr(>|z|)
mutant 1.1907 3.2895 0.1984 0.2023 5.886 3.96e-09 ***

The parameter estimate and it’s standard error are the same as in the ordinary Cox
model above. Here, however, there is an additional estimate of the standard error,
the “robust se”, that is computed using the Lin-Wei method. This estimate is only
slightly higher than the one from the standard Cox model, indicating that the effect
of clustering within first-degree relatives is small. The p-value is higher, but still
highly significant, indicating that having a first-degree relative who is a BRCA
mutation carrier increases the hazard of developing breast cancer by a factor of 3.30.

As an alternative, we may account for the clustering using a gamma frailty model
as follows:
> result.coxph.frail <- coxph(Surv(age, brcancer) ~ mutant +
+ frailty(famID), data=ashkenazi)
> summary(result.coxph.frail)

n= 3920, number of events= 473

coef se(coef) se2 Chisq DF p
mutant 1.272 0.2317 0.2004 30.13 1.0 4.0e-08
frailty(famID) 221.50 211.6 3.1e-01

Here we see that the coefficient for the “mutant” term is similar as before. The coxph
function with the frailty option provides two estimates of the standard error. The
first, “se(coef)” is generally the preferred estimate [66], while the “se2” estimate
is an alternative estimate based on a variation of the sandwich estimator [26, 66].
By default “frailty” uses the gamma frailty distribution; to use a normally distributed
frailty use “frailty(dist=‘normal’)”.

A newer facility for fitting random effects frailty models, which supersedes the
“frailty” option, is the “coxme” package, which must be separately downloaded and
installed. It may be used as follows:



9.1 Clustered Survival Times and Frailty Models 119

1 > library(coxme)
2 > result.coxme <- coxme(Surv(age, brcancer) ~ mutant +
3 + (1|famID), data=ashkenazi)
4 > summary(result.coxme)
5 Cox mixed-effects model fit by maximum likelihood
6 Data: ashkenazi events,
7 n = 473, 3920
8 Iterations= 10 63
9 NULL Integrated Fitted

10 Log-likelihood -3579.707 -3564.622 -3411.522
11
12 Chisq df p AIC BIC
13 Integrated loglik 30.17 2.0 2.8100e-07 26.17 17.85
14 Penalized loglik 336.37 150.1 2.2204e-16 36.16 -588.13
15
16 Model: Surv(age, brcancer) ~ mutant + (1 | famID)
17 Fixed coefficients
18 coef exp(coef) se(coef) z p
19 mutant 1.236609 3.443914 0.2205358 5.61 2.1e-08
20
21 Random effects
22 Group Variable Std Dev Variance
23 famID Intercept 0.5912135 0.3495334

The model statement “ ~ mutant + (1 | famID)” states that we are fitting “mutant” as
a fixed effect; the expression “(1 | famID)” indicates that family members, defined
by the variable “famID” are nested within family. In the output, line 8 contains
convergence information from the fitting process. Line 10 contains values of the
partial log likelihood. The first (“NULL”) value is the log partial likelihood from the
model with no covariates, and is identical to the null value from the Cox model given
at the beginning of this subsection; the second (“Integrated”) is from the partial
log-likelihood with the random effect terms integrated out. To find the statistical
significance of including a random effect in the model, we compare the integrated
log-likelihood value ("3564.622) to the value given earlier for the maximum
(partial) log likelihood for the ordinary Cox model with “mutant” in the model
("3566.745). Twice the difference is G2 D 2."3564:622C 3566:745/ D 4:246.
The p-value is thus 0.039, obtained as follows:
> pchisq(4.246,1,lower.tail=F)
[1] 0.03934289

The “Integrated loglik” chi-square statistic on Line 13, 30.17, is twice the difference
between the integrated and null values of the log-likelihood on line 10. This is a
combined test of the fixed effect “mutant” and the random effect, and is compared
to a chi-square distribution with 2 degrees of freedom, yielding a highly significant
p-value. The fixed effect parameter estimates (lines 17–19) give the coefficient
estimate for “mutant”, the estimated risk ratio (3.44) for those with a mutation-
carrying relative compared to those without, and the Wald test p-value which, as we
have seen, shows a highly significant association with risk of onset of breast cancer.
Finally, the variance of the random effect (0.35) and it’s square root, the standard
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deviation (0.59) are given in Line 23. Also shown are some additional terms, such
as the fitted log-likelihood (Line 10) and the penalized log likelihood (Line 14), that
have more specialized uses.

9.1.4 Accounting for Within-Person Pairing of Eye
Observations in the Diabetes Data

We shall examine the effect of treatment on time-to-blindness in patients with
diabetic retinopathy, and also the interaction of the effect of treatment with age
of onset (early or adult onset), as defined by the “adult” indicator. The results, using
the “coxme” function, are as follows:

1 > result.coxme <- coxme(Surv(time, status) ~ treat +
2 + as.factor(adult) + treat*as.factor(adult) + (1 | id),
3 + data=diabetes)
4 > summary(result.coxme)
5 Cox mixed-effects model fit by maximum likelihood
6 Data: diabetes events,
7 n = 155, 394
8 Iterations= 7 39
9 NULL Integrated Fitted

10 Log-likelihood -867.9511 -847.3837 -761.3231
11
12 Chisq df p AIC BIC
13 Integrated loglik 41.13 4.00 2.5207e-08 33.13 20.96
14 Penalized loglik 213.26 77.99 1.6542e-14 57.28 -180.07
15
16 Model: Surv(time, status) ~ treat + as.factor(adult) +
17 treat * as.factor(adult) + (1 | id)
18 Fixed coefficients
19 coef exp(coef)se(coef) z p
20 treat -0.4998 0.60667 0.22541 -2.22 0.0270
21 as.factor(adult)2 0.3995 1.49103 0.24568 1.63 0.1000
22 treat:as.factor(adult)2 -0.9681 0.37981 0.36164 -2.68 0.0074
23
24 Random effects
25 Group Variable Std Dev Variance
26 id Intercept 0.9171924 0.8412418

Clearly, treatment increases time to blindness (Line 20), since the coefficient
is negative ("0.5) with a p-value of 0.027. Those with adult-onset diabetes are at
increased risk for early blindness (Line 21), but treatment has a greater beneficial
effect for those with adult-onset diabetes than it does for those with juvenile-
onset diabetes (Line 22). Several researchers have reported similar results with this
data [41, 57].
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9.2 Cause-Specific Hazards

Until now we have considered survival times with a single, well-defined outcome,
such as death or some other event. In some applications, however, a patient
may potentially experience multiple events, only the first-occurring of which can
be observed. For example, we may be interested in time from diagnosis with
prostate cancer until death from that disease (Cause 1) or death from some other
cause (Cause 2), but for a particular patient we can only observe the time to the first
event. Of course, as discussed in previous chapters, a patient may also be censored if
he is still alive at the last follow-up time. If interest centers on a particular outcome,
time to prostate cancer death, for example, a simplistic analysis method would be to
treat death from other causes as a type of censoring. This approach has the advantage
that implementing it is straightforward using the survival analysis methods we have
discussed in previous chapters. However, a key assumption about censoring is that
it is independent of the event in question. In most competing risk applications,
this assumption may be questionable, and in some cases may be quite unrealistic.
Furthermore, it is not possible to test the independence assumption using only the
competing risks data. The only hope of evaluating the accuracy of the assumption
would be to examine other data or appeal to theories concerning the etiology of
the various death causes. Consequently, interpretation of survival analyses in the
presence of competing risks will always be subject to at least some ambiguity due
to uncertainty about the degree of dependence among the competing outcomes.

9.2.1 Kaplan-Meier Estimation with Competing Risks

We begin with estimating a survival curve in a single sample in the presence of
competing events. The simplest method, as we have noted above, would be to
in turn select each as the primary event, and to treat the other as a censoring
event. However, to obtain unbiased estimates of survival curves, this simplistic
method would require the usually false assumption that the two causes of death are
independent. We may illustrate this problem be considering prostate cancer patients
ages 80 and over diagnosed with stage T2 poorly differentiated prostate cancer.
We define indicator variables “status.other” and “status.prost”, and then select the
subset “prostateSurvival.highrisk” as follows, using the “prostate survival” data
from Example 1.4 in Chap. 1:
> prostateSurvival <- within(prostateSurvival, {
+ status.prost <- as.numeric({status == 1})
+ status.other <- as.numeric({status == 2})})
> attach(prostateSurvival)
> prostateSurvival.highrisk <- prostateSurvival[{{grade ==

"poor"} &
+ {stage=="T2"} & {ageGroup == "80+"}},]
> head(prostateSurvival.highrisk)
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grade stage ageGroup survTime status status.other status.prost
13 poor T2 80+ 21 0 0 0
38 poor T2 80+ 105 0 0 0
41 poor T2 80+ 2 1 0 1
47 poor T2 80+ 67 2 1 0
78 poor T2 80+ 2 0 0 0
93 poor T2 80+ 60 2 1 0

Let us consider two analyses, one with death due to other causes (status = 2) as
censored, and the other with death due to prostate cancer (status = 1) as censored.
We set these up as follows:
> status.prost <- {prostateSurvival.highrisk$status == 1}
> status.other <- {prostateSurvival.highrisk$status == 2}

The Kaplan-Meier estimates of survival defined as time to death from prostate
cancer (with other causes of death considered as censored) is as follows:
> result.prostate.km <- survfit(Surv(survTime, event=status.

prost) ~ 1,
+ data=prostateSurvival.highrisk)

Similarly, to estimate survival for time to death from other causes, we have
> result.other.km <- survfit(Surv(survTime, event=status.

other) ~ 1,
+ data=prostateSurvival.highrisk)

To illustrate the problem with this analysis, let us first extract the Kaplan-Meier
survival curve for death from other causes:
> surv.other.km <- result.other.km$surv
> time.km <- result.other.km$time/12

Now let’s extract the corresponding survival curve for death from prostate cancer,
and then express it as a cumulative incidence function, which is one minus the
survival curve (also known as the cumulative distribution function):
> surv.prost.km <- result.prostate.km$surv
> cumDist.prost.km <- 1 - surv.prost.km

Now we may plot both on the same graph, using the plot option ‘type = “s” ’ to
produce step functions:
> plot(cumDist.prost.km ~ time.km, type="s", ylim=c(0,1), lwd=2,
+ xlab="Years from prostate cancer diagnosis", col="blue")
> lines(surv.other.km ~ time.km, type="s", col="green", lwd=2)

The result, shown in Fig. 9.1, shows that the two curves cross. At 10 years, for
example, the probability of dying of prostate cancer is 0.46, and of other causes it is
0.88. The fact that the sum of these two probabilities exceeds one demonstrates that
these estimates, viewed as probabilities that a particular patient would die of prostate
cancer or something else, are severely biased. One might be tempted to view these
curves as estimates of the probability of death from one cause if the other cause
were eliminated as a possibility, but such an exercise would require the assumption
that the causes be independent. This assumption cannot be tested from the data, and
in any case the meaning of the resulting estimates would be purely hypothetical.
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Fig. 9.1 Kaplan-Meier
estimates of the probabilities
of death from prostate cancer
and from other causes
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9.2.2 Cause-Specific Hazards and Cumulative
Incidence Functions

To develop a formal model to accommodate competing risks, let us suppose that
there are K distinct causes of death, which we may diagram as in Fig. 9.2.

The distinguishing feature of this competing causes framework is that each
subject can experience at most one of the K causes of death; the times that
the subject would have experienced the remaining causes is thus unknown. This
framework can also accommodate applications with non-fatal events, as long as all
of the events are mutually exclusive. For example, in individuals infected with HIV,
one may be interested in the time to development of symptoms of AIDS, or the
appearance of a condition called syncytium inducing (SI) HIV phenotype (Putter
et al. [56]; Anderson et al. [4]). With competing risks, it is helpful to define, for
each cause of interest, a function known as the cumulative risk function, also called
the sub-distribution function. This is the cumulative probability that an individual
dies from that particular cause by time t, and is given by

Fj.t/ D Pr .T ! t;C D j/ D
tˆ

0

hj.u/S.u/ du:
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This function is similar to the cumulative distribution function in that it is always
increasing (or more precisely, non-decreasing). But unlike a cumulative distribution
function, it goes, in the limit, to the probability of death from that particular cause,
rather than to 1. Formally, we have

Fj.1/ D Pr .C D j/ :

The cause-specific hazard is defined in a manner similar to the hazard function
from Chap. 2, but now it is the probability that a specific event occurs at time t given
that the individual survives that long:

hj.t/ D lim
ı!0

%
Pr.t < T < tC ı;C D jjT > t/

ı

&
:

If we add up all of the cause-specific hazards at a particular time, we get the hazard
function of Chap. 2:

h.t/ D
KX

jD1
hj.t/:

That is, the risk of death at a particular time is the sum of the risks of all of the
specific causes of death at that time.

Suppose now that we have D distinct ordered failure times t1,t2,: : : ; tD. We may
estimate the hazard at the ith time ti using Oh .ti/ D di=ni, as we have seen in previous
chapters. The cause-specific hazard for the kth hazard may be written in a similar
form as Ohk .ti/ D dik=ni. This is just the number of events of type k at that time
divided by the number at risk at that time. The sum over all cause-specific hazards is
the overall hazard, Oh.ti/ D

'P
k dik

(
=ni. The probability of failure from any cause at

time ti is the product of OS.ti#1/, the probability of being alive just before ti, and Oh .ti/,
the risk of dying at ti. Similarly, the probability of failure due to cause k at that time
is OS.ti#1/Ohk.ti/: The sub-distribution function, or cumulative incidence function, is
the probability of dying of cause k at time ti. This is the sum of all probabilities of
dying of this cause up to time ti and is given by

OFk.t/ D
X

ti%t

OS.ti#1/Ohk.ti/:

That is, once we have an estimate of the overall survival function OS.t/, we can
obtain the cumulative incidence function for a particular cause by summing over
the product of this and the cause-specific hazards for that cause.

To illustrate this methodology, let us consider a simple hypothetical data set with
six observations and two possible causes of death, displayed in Fig. 9.3.

Denoting the event types with the numbers 1 and 2, and the censored observations
with the number 0, we may enter the data into R as follows:
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Fig. 9.3 Competing risk
survival data. Squares
represent failure from cause 1
and triangles from cause 2.
Open circles represent
censored observations
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> tt <- c(2,7,5,3,4,6)
> status <- c(1,2,1,2,0,0)

We first compute the overall survival distribution,

> status.any <- as.numeric(status >= 1)
> result.any <- survfit(Surv(tt, status.any) ~ 1)
> result.any$surv
[1] 0.8333333 0.6666667 0.6666667 0.4444444 0.4444444 0.0000000

We compute the cumulative incidence functions as in the following table:

Time n.risk n.event.1 n.event.2 n.event.any Survival h.1 h.2 CI.1 CI.2

2 6 1 0 1 0.833 1/6 0 0.167 0.000
3 5 0 1 1 0.667 0 1/5 0.167 0.167
5 3 1 0 1 0.444 1/3 0 0.389 0.167
7 1 0 1 1 0.1000 0 1 0.389 0.611

For example, the probability of event type 1 at the first time .t D 2/ is given by
1:000& 1

6
D 0:167: This is also the estimate of the cumulative incidence function at

this time. The probability of an event of this type at time t D 5 is 0:667& 1
3
D 0:222.

Then the cumulative incidence for this event at time t D 5 is 0:167C0:222D 0:389:
These results may be more easily obtained using the “Cuminc” function in the
“mstate” R package [14]:

> library(mstate)
> ci <- Cuminc(time=tt, status=status)
> ci

time Surv CI.1 CI.2 seSurv seCI.1 seCI.2
1 0 1.00e+00 0.000 0.000 0.00e+00 0.000 0.000
2 2 8.33e-01 0.167 0.000 1.52e-01 0.152 0.000
3 3 6.67e-01 0.167 0.167 1.92e-01 0.152 0.152
4 5 4.44e-01 0.389 0.167 2.22e-01 0.219 0.152
5 7 4.93e-17 0.389 0.611 2.47e-17 0.219 0.219
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The standard errors for the survival curve are computed using Greenwood’s formula
as discussed in Chap. 3. The standard errors for the cumulative incidence functions
are computed in an analogous manner; see Putter et al. [56] for details.

9.2.3 Cumulative Incidence Functions for Prostate
Cancer Data

Returning to the prostate cancer example of Fig. 9.1, we may now estimate the
competing risks cumulative incidence functions using the “Cuminc” function in the
R package “mstate” as follows:

> library(mstate)
> ci.prostate <- Cuminc(time=prostateSurvival.highrisk$survTime,
+ status=prostateSurvival.highrisk$status)

The first few lines of the resulting file “ci.prostate” are as follows:

> head(ci.prostate)
time Surv CI.1 CI.2 seSurv seCI.1 seCI.2

1 0 1.000 0.00000 0.00000 0.00000 0.00000 0.00000
2 1 0.994 0.00000 0.00592 0.00264 0.00000 0.00264
3 2 0.988 0.00602 0.00592 0.00376 0.00269 0.00264
4 3 0.984 0.00848 0.00715 0.00430 0.00319 0.00291
5 4 0.983 0.00973 0.00715 0.00447 0.00342 0.00291
6 5 0.978 0.01477 0.00715 0.00511 0.00423 0.00291

The first column, “time” is the time in months. The column “Surv” is the Kaplan-
Meier survival estimate for time to death from any cause (prostate or something
else). The next two columns are the cumulative incidence function estimates for
causes 1 (prostate) and 2 (other). The remaining columns are standard errors of the
respective estimates. We may plot the cause-specific cumulative incidence functions
as follows:

ci1 <- ci.prostate$CI.1 # CI.1 is for prostate cancer
ci2 <- ci.prostate$CI.2 # CI.2 is for other causes
times <- ci.prostate$time/12 # convert months to years
Rci2 <- 1 - ci2

We may plot the cumulative incidence function for death from prostate cancer, and
for death from other causes in solid green and blue, respectively, and the previous
estimates with thin lines of the same (but lighter) colors,

> plot(Rci2 ~ times, type="s", ylim=c(0,1), lwd=2, col="green",
+ xlab="Time in years", ylab="Survival probability")
> lines(ci1 ~ times, type="s", lwd=2, col="blue")
> lines(surv.other.km ~ time.km, type="s",

col="lightgreen", lwd=1)
> lines(cumDist.prost.km ~ time.km, type="s",

col="lightblue", lwd=1)
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Fig. 9.4 Cumulative
incidence of death from
prostate cancer and from
other causes, compared to the
Kaplan-Meier estimates
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Fig. 9.5 Stacked cumulative
incidence functions of death
from prostate cancer and
from other causes
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Figure 9.4, analogous to one presented by Putter et al. [56] for a different data
set, clearly illustrates the value of displaying competing risks cumulative incidence
functions. These curves represent estimates of the actual probabilities that a patient
will die of a particular cause, rather than hypothetical probabilities that he would
die of one cause in the absence of the other.

A common way to display competing risk cumulative incidence curves is via a
stacked plot, as shown in Fig. 9.5. The lower, blue curve represents the cumulative
probability of death from prostate cancer, and the difference between the blue and
upper, green curve represents the probability of death from other causes. The sum of
the two probabilities of death, i.e. the upper, green curve, represents the cumulative
probability of death from any cause, and is equal to one minus the Kaplan-Meier
survival curve for death from any cause.
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9.2.4 Regression Methods for Cause-Specific Hazards

When there is a single outcome of interest, the Cox proportional hazards model
provides an elegant method for accommodating covariate information. However,
modeling covariate information for competing risks data presents special chal-
lenges, since it is difficult to define precisely the hazard function on which the
covariates should operate. The first method we will discuss, discussed in detail by
Putter et al. [56] and deWreede, Fiocco, and Geskus [14], is the most direct. We will
illustrate using the prostate cancer data, this time restricting our attention (for now)
to patients with stage T2 prostate cancer. Essentially, we will study the effects of the
remaining covariates (grade and age) on prostate cancer death, treating other causes
of death as censoring indicators, and vice versa for the effects of the covariates on
other causes of death. We set up the data as follows:

prostateSurvival.T2 <- prostateSurvival[prostateSurvival$stage
=="T2",]

attach(prostateSurvival.T2)

We then fit a standard Cox model for prostate cancer death as follows:

> result.prostate <- coxph(Surv(survTime, status.prost) ~ grade +
+ ageGroup)
> summary(result.prostate)

coef exp(coef) se(coef) z Pr(>|z|)
gradepoor 1.2199 3.3867 0.1004 12.154 < 2e-16 ***
ageGroup70-74 -0.2860 0.7513 0.2595 -1.102 0.2704
ageGroup75-79 0.4027 1.4958 0.2257 1.784 0.0744 .
ageGroup80+ 0.9728 2.6454 0.2148 4.529 5.92e-06 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

These results show that patients having poorly differentiated disease (grade = poor)
have much worse prognosis than do patients with moderately differentiated disease
(the reference group here), with a log-hazard ratio of 1.2199. These results also
show that the hazard of dying from prostate cancer increases with increasing age of
diagnosis (the reference is the youngest age group, 65–69).

Considering death from other causes as the event of interest, we have

> result.other <- coxph(Surv(survTime, status.other) ~ grade +
+ ageGroup)
> summary(result.other)

coef exp(coef) se(coef) z Pr(>|z|)
gradepoor 0.28104 1.32451 0.05875 4.784 1.72e-06 ***
ageGroup70-74 0.09462 1.09924 0.12492 0.757 0.44879
ageGroup75-79 0.31330 1.36793 0.11709 2.676 0.00746 **
ageGroup80+ 0.79012 2.20367 0.11204 7.052 1.76e-12 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Taken at face value, these results indicate that patients with poorly differentiated
cancer have a higher risk of death from non-prostate-cancer related disease than
do those with moderately differentiated disease. While the log hazard ratio is
much smaller than with prostate cancer death as the outcome (0.28104 vs. 1.2199),
one might expect that cancer grade wouldn’t have any effect on death from non-
prostate-cancer causes. These hazard ratios refer to hazard functions for death from
prostate cancer and for death from other causes, and these are assumed to be
operating independently. As we have discussed previously, these assumptions are
highly suspect, and it is unclear to what extent the hazard functions that have been
estimated correspond to actual (and unobservable) hazards.

To address this issue, Fine and Gray developed an alternative method for
modeling covariate data with competing risks. Instead of defining the effects of
covariates on the cause-specific hazards, they define a “sub-distribution hazard”

Nhk.t/ D lim
ı!0

pr.t < Tk < tC ıjE/
ı

where the conditional event is given by

E D
˚
fTk > tg or

˚
Tk0 ! t and k0 ¤ k

))
:

That is, the sub-distribution hazard for cause k, like the definition of the ordinary
hazard function given in Chap. 2, is essentially the probability that the failure time
lies in a small interval at t conditional on an event E, divided by the length of that
small interval. The difference is that, in addition to referring to the kth failure time,
the conditioning set specifies not only that Tk > t but also allows inclusion of events
other than the kth event in question, in which case we must have Tk0 ! t. Thus,
when computing these sub-distribution hazards, the risk set includes not only those
currently alive and at risk for the kth event type, but also those who died earlier of
other causes.

Consider, for example, for the data in Fig. 9.3, the risk set for death from Cause
#2 (triangles) at time t D 7 consists not only of Patient 2, the sole patient still alive
at that time, but also Patients 1 and 3, since they died of Cause #1 (squares) earlier.
Patient 4 is not in the risk set for death from Cause #2 at time t D 7 since that person
died earlier from Cause #2, the same cause as Patient 2. Patients 5 and 6 also are
not in the risk set at this time since they were censored. The sub-distribution hazard
may be written in a more compact equivalent form as

Nhk.t/ D "d log .1 " Fk.t//
dt

:

The Fine and Gray method uses these sub-distribution hazards for modeling the
effects of covariates on a specific cause of death analogously to the Cox model,

Nhk.tI z; ˇ/ D Nh0k.t/ezˇ:

That is, the sub-distribution hazard for a subject with covariates z is proportional to
a baseline sub-distribution function Nh0k.t/:



130 9 Multiple Survival Outcomes and Competing Risks

The Fine and Gray methods are implemented in the ”crr” function in the R
package “cmprsk”. Before we can use the competing risk function “crr” in this
package, we need to put the covariates into a model matrix using the “model.matrix”
function. Using our attached data set “prostateSurvival.T2”, we do this as follows:

> cov.matrix <- model.matrix(~ grade + ageGroup)
> head(cov.matrix)

(Intercept) gradepoor ageGroup70-74 ageGroup75-79 ageGroup80+
1 1 0 1 0 0
2 1 1 0 1 0
3 1 1 0 1 0
4 1 1 0 0 1
5 1 0 0 1 0
6 1 0 0 1 0

> cov.matrix.use <- cov.matrix[,-1] # drop the first column

We obtain estimates for the prostate cancer as follows, dropping the first (intercept)
column of the covariate matrix:

> library(cmprsk)
> result.prostate.crr <- crr(survTime, status, cov1=cov.

matrix[,-1],
+ failcode=1)

coef exp(coef) se(coef) z p-value
gradepoor 1.132 3.102 0.101 11.20 0.00000
ageGroup70-74 -0.272 0.762 0.253 -1.08 0.28000
ageGroup75-79 0.367 1.443 0.219 1.67 0.09400
ageGroup80+ 0.799 2.224 0.208 3.85 0.00012

The argument “failcode=1” refers to death from prostate cancer. For death from
other causes, we use “failcode=2”,

> result.other.crr <- crr(survTime, status, cov1=cov.matrix[,-1],
+ failcode=2)
> summary(result.other.crr)

coef exp(coef) se(coef) z p-value
gradepoor 0.126 1.13 0.0584 2.154 3.1e-02
ageGroup70-74 0.103 1.11 0.1252 0.824 4.1e-01
ageGroup75-79 0.273 1.31 0.1176 2.323 2.0e-02
ageGroup80+ 0.667 1.95 0.1128 5.917 3.3e-09

Again we see that poorly differentiated patients have higher risk for death from other
causes (risk ratio = 0.126), but the effect size is smaller than we obtained from the
Putter et al. method (risk ratio 0.281). The estimated effect on death from prostate
cancer of having poorly differentiated disease is similar for both methods (risk ratio
of 1.22 for Putter et al. vs. 1.132 for Fine and Gray).
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9.2.5 Comparing the Effects of Covariates on Different
Causes of Death

An advantage of the Putter et al. method over the Fine and Gray method is the
ease with which we can compare the effects of a covariate on, for example, death
from prostate cancer and death from other causes. For example, we know that the
risk of both causes of death increase with age. But does the effect of age differ for
these two causes? To answer this question, we first need to convert the data set from
the original one where each patient has his own row in the data set into one where
each patient’s data is split into separate rows, one for each cause of death. In the
prostate cancer case, we need to create, for each patient, two rows, one for death
from prostate cancer and one for death from other causes. To simplify this process,
we can use utilities in the “mstate” package. This package is capable of handling
complex multistate survival models, but can also be used to set up competing risks
as a special case. We begin by setting up a “transition” matrix using the function
“trans.comprisk”,
> tmat <- trans.comprisk(2, names = c("event-free", "prostate",

"other"))
> tmat to
from event-free prostate other

event-free NA 1 2
prostate NA NA NA
other NA NA NA

The first argument is the number of specific outcomes, and the second argument
(“names”) gives the name of the censored outcome and the two other outcomes. The
resulting matrix states that a patient’s status can change from “event-free” to either
“prostate” or “other”, these latter two being causes of death. The other entries of
the matrix simply state that once a patient dies of one cause, they cannot change
to another cause or return to the “event-free” status. Next, we use the function
“msprep” to create the new data set, and examine the first few rows:
> prostate.long <- msprep(time = cbind(NA, survTime, survTime),
+ status = cbind(NA, status.prost, status.other),
+ keep = data.frame(grade, ageGroup), trans = tmat)
> head(prostate.long)

id from to trans Tstart Tstop time status grade ageGroup
1 1 1 2 1 0 27 27 0 mode 70-74
2 1 1 3 2 0 27 27 0 mode 70-74
3 2 1 2 1 0 38 38 0 poor 75-79
4 2 1 3 2 0 38 38 1 poor 75-79
5 3 1 2 1 0 13 13 0 poor 75-79
6 3 1 3 2 0 13 13 0 poor 75-79

In this “msprep” function, the argument “time” consists of three columns, each
corresponding the states defined by the “tmat” transition matrix. The first “event-
free” state is represented by a placeholder, “NA”; the second and third by the
survival times for time to death from prostate cancer and from other causes. In
our data set, both are represented by the “survTime” vector. The two times are
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distinguished in the next argument, “status”. This also has three columns. The
first is a placeholder, “NA” as before; the second is the censoring indicator for
prostate cancer (“status.prost”), and the third is for other causes (“status.other”).
These latter two variables were defined earlier from the “status” column of the
data frame “prostateSurvival.T2”. Finally, the transition matrix is defined by “trans
= tmat”. Note that the variables “survTime”, “grade”, and “ageGroup” from the
“prostateSurvival.T2” file are available for use to us because we have previously
attached it.

The output file has twice as many rows as the original “prostateSurvival.T2”
file. The first column, “id”, refers to the patient number in the original file; here,
each is repeated twice. For our purposes, we can ignore the columns “from” and
“two”. The column “trans” will be important, because it contains an indicator of
the cause of death; here “1” refers to death from prostate cancer and “2” refers to
death from other causes. The “Tstart” column contains all 0’s, since for our data,
“time = 0” indicates the diagnosis with prostate cancer. We can ignore “Tstop”, and
use the “time” column as the survival time and the “status” column as the censoring
indicator. Note that for each patient, there are two entries for “status”. Both can be 0,
or one can be 1 and the other 0; they can’t both be 1 because each patient can die
of only one cause, not both. Finally, the last two columns are covariate columns we
carried over from the original “prostateSurvival.T2” data frame. Each original value
is doubled, since each patient has one covariate value, regardless of their cause of
death.

We may obtain a summary of the numbers of events of each type as follows:

> events(prostate.long)
$Frequencies

to
from event-free prostate other no event total entering
event-free 0 410 1345 4165 5920
prostate 0 0 0 0 0
other 0 0 0 0 0

These results indicate that there are 410 deaths due to prostate cancer, 1345 due to
other causes, and 4165 censored observations, for 5920 total. (We may ignore the
second two rows, which are relevant only for multistate models.)

To show how to use our newly expanded data set, we can use it to reproduce
our analysis from the previous section. To obtain these estimates of the effects of
covariates on prostate-specific and other death causes, we use separate commands,
one for “trans = 1” (prostate cancer) and the other for “trans = 2” (other causes of
death), as follows:

> summary(coxph(Surv(time, status) ~ grade + ageGroup,
+ data=prostate.long, subset={trans==1}))
> summary(coxph(Surv(time, status) ~ grade + ageGroup,
+ data=prostate.long, subset={trans==2}))

The results (not shown) are identical to what we obtained before.
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If we stratify on cause of death using “strata(trans)” we get estimates of the effect
of the covariates on cause of death under the assumption that they affect both causes
of death equally,
> summary(coxph(Surv(time, status) ~ grade + ageGroup

+ strata(trans),
+ data=prostate.long))

n= 11840, number of events= 1755

coef exp(coef)se(coef) z Pr(>|z|)
gradepoor 0.515 1.673 0.050 10.372 < 2e-16 ***
ageGroup70-74 0.027 1.027 0.112 0.238 0.81210
ageGroup75-79 0.332 1.394 0.104 3.198 0.00139 **
ageGroup80+ 0.833 2.301 0.099 8.396 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

In this example, this model wouldn’t be appropriate, since we would expect that
cancer grade affects prostate cancer death differently than it does death from other
causes. To test this formally, we fit the following model:
> summary(coxph(Surv(time, status) ~ grade*factor(trans) +
+ ageGroup + strata(trans), data=prostate.long))

n= 11840, number of events= 1755

coef exp(coef)se(coef) z Pr(>|z|)
gradepoor 1.239 3.451 0.100 12.391 < 2e-16 ***
factor(trans)2 NA NA 0.000 NA NA
ageGroup70-74 0.026 1.027 0.112 0.235 0.81431
ageGroup75-79 0.333 1.395 0.104 3.201 0.00137 **
ageGroup80+ 0.833 2.301 0.099 8.394 < 2e-16 ***
gradepoor:
factor(trans)2 -0.963 0.382 0.116 -8.327 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The coefficient estimate 1.239 for “gradepoor” is the effect of grade on prostate
cancer death, and is similar to the estimate we got earlier (1.220) for prostate cancer
death alone. Here however, we also have an estimate in the last row for the difference
between the effect on prostate cancer death and death from other causes. This is the
interaction between a grade of “poor” and cause “2” (other death). The estimate,
"0:963, which is highly statistically significant, represents the additional effect of
poor grade on risk of death from other causes relative to its effect on prostate cancer
death. Specifically, the hazard of death from other causes is exp("0.963) = 0.381
times the hazard of death from prostate cancer.

We have determined that having a poor grade of prostate cancer strongly affects
the risk of dying from prostate cancer, and this effect is much stronger on the risk of
death from prostate cancer than on the risk of death from other causes. We may next
ask how increasing age affects the risk of dying from prostate cancer and of other
causes. Unsurprisingly, the trend is clear in both cases, as we have seen above. But
is the effect any different on these two causes? We can answer this by examining
the interaction between age group and cause of death as follows:
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> summary(coxph(Surv(time, status) ~ (grade + ageGroup)*trans +
+ ageGroup + strata(trans), data=prostate.long))

n= 11840, number of events= 1755

coef exp(coef se(coef) z Pr(>|z|)
gradepoor 1.220 3.387 0.100 12.154 < 2e-16 ***
ageGroup70-74 -0.286 0.751 0.260 -1.102 0.2704
ageGroup75-79 0.403 1.496 0.226 1.784 0.0744 .
ageGroup80+ 0.973 2.645 0.215 4.529 5.92e-06 ***
trans2 NA NA 0.000 NA NA
gradepoor:trans2 -0.939 0.391 0.116 -8.072 6.66e-16 ***
ageGroup70-74:trans2 0.380 1.463 0.288 1.322 0.1863
ageGroup75-79:trans2 -0.089 0.914 0.254 -0.351 0.7252
ageGroup80+:trans2 -0.183 0.833 0.242 -0.754 0.4508
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The results are in the last three rows of parameter estimates. None of these
differences are statistically significant, so we conclude that there is no difference
in the effect of age on the two death causes, after adjusting for grade.

9.3 Additional Notes

9.1 The “ashkenazi” data may be used to estimate the age-of-onset distribution of
carriers and non-carriers of the BRCA mutation, but doing this properly is quite
involved. See for Struewing et al. [64], Moore et al. [49], and Chatterjee and
Wacholder [8] for details.

9.2 The “mstate” package is capable of modeling complexmultistage survivalmod-
els with alternative pathways to an endpoint. The competing risks capabilities of
this package are actually a special case of the more general multistage methods.
See Putter et al. [56] and the package documentation for details.

Exercises

9.1. Using the “ashkenazi” data of Sect. 9.1, use “coxme” to fit a random effects
model without the “mutant” fixed effect term. How does the estimate of the variance
of the random effect from this model compare to that from the model that includes
“mutant” as a fixed effect?

9.2. Using the “diabetes” data of Sect. 9.1, fit the interaction model using (1)
the frailty option of “coxph”, using both the gamma and gaussian random effects
options, and (2) using the “cluster” option in “coxph”. Compare the estimated
parameters and standard errors to those from the “coxme” model.
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9.3. Again using the “diabetes” data, use “coxme” to fit a model without the
interaction term. Test for the importance of the interaction term using both a Wald
test and a likelihood ratio test.

9.4. Repeat the calculations of the cumulative incidence functions for death from
prostate cancer and from other causes from Sect. 9.2.3, but use the age group 75–84
instead of 85 and above.



Chapter 10
Parametric Models

10.1 Introduction

In biomedical applications, non-parametric (e.g. the product-limit survival curve
estimator) and semi-parametric (e.g. the Cox proportional hazards model) methods
play the most important role, since they have the flexibility to accommodate a
wide range of hazard function forms. Still, parametric methods have a place in
biomedical research, and may be appropriate when survival data can be shown
to approximately follow a particular parametric form. Parametric models are
often much easier to work with than the partial-likelihood-based models we have
discussed in earlier chapters, since the former are defined by a small and fixed
number of unknown parameters. This allows us to use standard likelihood theory
for parameter estimation and inference. Furthermore, accommodating complex
censoring and truncation patterns is much more direct with parametric models than
with partial likelihood models. Of course, the validity of these techniques depends
heavily on the appropriateness of the particular parametric model being used. In
Chap. 2 we introduced the exponential, Weibull, and gamma distributions, and
mentioned several others that could potentially serve as survival distribution models.
In this chapter we will emphasize the exponential and Weibull distributions, since
these are the most commonly used parametric distributions. We will also briefly
discuss the use of some other parametric models in analyzing survival data.

10.2 The Exponential Distribution

The exponential distribution is the simplest distribution to work with. It has a
constant hazard function, h.t/ D #; which gives it the memory-less property.
That is, the risk of having the event of interest is the same at any point in time
as it was at the beginning. The p.d.f. and survival functions are, as discussed in
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Chap. 2, f .tI#/ D #e##t and S.tI#/ D e##t, respectively. To construct a likelihood
function, we include the p.d.f. for each observed failure and the survival function
for each (right) censored observation, as shown in Sect. 2.6. The simplicity of the
exponential distribution makes it attractive for certain specialized applications, such
as for power and sample size calculations, as we shall see in the next chapter.
But for modeling survival data, we will need the additional flexibility afforded by
the Weibull distribution, of which the exponential distribution is a special case. In
fact, if a survival variable T has an exponential distribution with parameter #, the
transformed variable T˛ , where ˛ is an additional parameter, will have a Weibull
distribution.

10.3 The Weibull Model

10.3.1 Assessing the Weibull Distribution as a Model
for Survival Data in a Single Sample

The Weibull survival distribution, as expressed in Sect. 2.4, has hazard and survival
functions h.t/ D ˛#˛t˛#1and S.t/ D e#.#t/˛ . Later, when we use the Weibull
distribution to assess the effects of covariates on survival, we shall find it convenient
to use the scale parameter & D 1=˛, and the mean parameter " D " log#. Then

h.t/ D 1

&
e# "

& t
1
& #1

and

S.t/ D e#e!"=& t1=& :

As discussed in Additional Note 2 in Chap. 2, the term “scale” parameter as we use
it here has a different meaning than what is often used when defining the Weibull
distribution.

In the special case where & D 1 the Weibull distribution reduces to an
exponential distribution with rate parameter #. Taking a complementary log-log
transformation g.u/ D log Œ" log.u/! of the Weibull survival function, we have

log Œ" log.Si/! D ˛ log.#/C ˛ log.ti/ D ""
&

C 1

&
log.ti/ (10.3.1)

where Si D S.ti/.
This result suggests a diagnostic tool to assess how well a set of survival data

follow a Weibull distribution. We first compute the Kaplan-Meier estimate OS of a
survival distribution. Then, we define yi D log

n
" log

h
OS.ti/

io
and plot yi versus
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log.ti/. Finally, we fit through these points a straight line, with equation of the form
y D bCm log twhere b D ""=& andm D 1=& are, respectively, the y-intercept and
slope of the line. If the plotted points fall along this fitted line, one may conclude
that the survival data may be approximately modeled using a Weibull distribution.
Furthermore, the slope of the fitted line will provide an estimate of 1=& , so that
& D 1=m, and the y-intercept is b D ""=& , so that " D "b=m.

We first examine the gasticXelox data discussed in Chap. 3 to see if it follows
a Weibull distribution. We first obtain a Kaplan-Meier estimate of the survival
distribution,

timeMonths <- gastricXelox$timeWeeks*7/30.25
delta <- gastricXelox$delta
library(survival)
result.km <- survfit(Surv(timeMonths, delta) ~ 1)

Next we extract the survival estimates and time variables from “result.km” and
transform the former with a complementary log-log transformation, and the latter
with a log transformation,

survEst <- result.km$surv
survTime <- result.km$time
logLogSurvEst <- log(-log(survEst))
logSurvTime <- log(survTime)

Finally, we plot “logLogSurvEst” versus “logSurvTime” and fit a straight line
through the points,

plot(logLogSurvEst ~ logSurvTime)
result.lm <- lm(logLogSurvEst ~ logSurvTime)
abline(result.lm)

The results, shown in Fig. 10.1, indicate that a Weibull distribution may not be
appropriate for these data, since the points do not follow a linear relationship.

We now consider if a Weibull distribution is appropriate for the pharmacoSmok-
ing data discussed in earlier chapters. Ignoring for now the covariate information,we
may examine the survival times to assess the suitability of the Weibull distribution

Fig. 10.1 Plot of the
complementary log-log
transformation of survival
probability versus log
survival time for the
gastricXelox data
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as a basis for modeling these data. Recall that the survival time is denoted “ttr” and
indicates the time to relapse (or censoring), and “relapse” is the censoring variable.
We first attach it and re-define survival times listed as zero to 0.5,

> attach(pharmacoSmoking)
> ttr[ttr == 0] <- 0.5

We then fit a fit a Kaplan-Meier survival curve to the data, and extract the survival
and corresponding event times,

> result.surv <- survfit(Surv(ttr, relapse) ~ 1)
> survEst <- result.surv$surv
> survTime <- result.surv$time

Then we compute a complementary log-log transformation of the survival times
and a log transformation of the corresponding event times, fit a linear regression
line through the points, and plot the points and the fitted line,

> logLogSurvEst <- log(-log(survEst))
> logSurvTime <- log(survTime)
> result.lm <- lm(logLogSurvEst ~ logSurvTime)
> result.lm

Coefficients:
(Intercept) logSurvTime

-2.0032 0.4385

We see that the slope is 0.4385 and the y-intercept is "2:0032. We plot the points
and fitted line as follows:

plot(logLogSurvEst ~ logSurvTime)
abline(result.lm)

The resulting plot, shown in Fig. 10.2, shows a close agreement with a Weibull
distribution.

Estimates of the scale and mean parameters are" D "b=m D 2:0032=0:4385D
4:568 and & D 1=m D 1=0:4385D 2:280.

Fig. 10.2 Plot of the
complementary log-log
transformation of the
Kaplan-Meier survival
estimate for the
pharmacoSmoking data
versus the log event time. The
straight line is the least
squares regression line
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10.3.2 Maximum Likelihood Estimation of Weibull Parameters
for a Single Group of Survival Data

The log-likelihood function, following the notation in Sect. 2.6, is

l.#; ˛/ D
nX

iD1
fıilog Œh.ti/!C log ŒS.ti/!g

Substituting the expressions for h.ti/ and S.ti/, we get

l.#; ˛/ D d log˛ C d˛ log#C .˛ " 1/

nX

iD1
ıi log ti " #˛

nX

iD1
t˛i (10.3.2)

where d DPn
iD1 ıi. Later, when we use the Weibull distribution to assess the effects

of covariates on survival, we shall find it convenient to use the scale parameter
& D 1=˛, and the mean parameter " D " log#.

As an alternative, we may directly compute maximum likelihood estimates of
these parameters. We may encode the log-likelihood of Eq. 10.3.2 in the following
R function, which takes parameters " and & as the first and second elements of a
vector “par”. Within the function, we first re-parametrize in terms of ˛ D 1=& and
# D e#", and then compute the log-likelihood using Eq. 10.3.2.

logLikWeib <- function(par, tt, status) {
mu <- par[1]
sigma <- par[2]
lambda.p <- exp(-mu)
alpha.p <- 1/sigma

dd <- sum(status)
sum.t <- sum(status*log(tt))
sum.t.alpha <- sum(tt^alpha.p)

term.1 <- dd*log(alpha.p) + alpha.p*dd*log(lambda.p)
term.2 <- (alpha.p - 1)*sum.t
term.3 <- (lambda.p^alpha.p)*sum.t.alpha
result <- term.1 + term.2 - term.3
result
}

The m.l.e may be obtained using the “optim” function, using as starting values the
estimates of " and & from the linear regression,

result <- optim(par=c(4.568, 2.280), fn=logLikWeib, method=
"L-BFGS-B",
lower=c(0.001, 0.01), upper=c(5, 5),
control=list(fnscale = -1),
tt=ttr, status=relapse)
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As always, we use the option “control=list(fnscale = -1)” to tell the optim function
to find a maximum (rather than a minimum). The final m.l.e. is given by

> result$par
[1] 4.656329 2.041061

The first element of “result$par” is O" and the second element is O& . A more practical
way to obtain these estimates is by means of the function “survreg” in the “survival”
package, which of course yields the same parameter estimates:

> result.survreg.0 <- survreg(Surv(ttr, relapse) ~ 1,
+ dist="weibull")
> summary(result.survreg.0)

Value Std. Error z p
(Intercept) 4.656 0.2170 21.46 3.68e-102
Log(scale) 0.713 0.0919 7.76 8.26e-15

Scale= 2.04

The m.l.e. of the scale parameter, 2.04, is close to the value 2.28 from the linear
regression approach. The “Intercept” m.l.e., 4.656, is approximately the value 4.57
we obtained from the linear regression. The estimate “Log(scale)” is, of course, the
log of the scale parameter.

10.3.3 Profile Weibull Likelihood

Suppose a survival random variableT follows aWeibull distributionwith parameters
˛ and #, as defined in Sect. 10.3.1. If the parameter ˛ is fixed, then a new random
variable T! D T˛ has an exponential distribution with parameter #˛ . It follows then,
from results in Sect. 2.6 on the maximum likelihood estimate for an exponential
distribution, that for a known value of ˛, we have O# D .d=V/1=˛ , where V D P

t˛i
and d is the total number of deaths. Since the m.l.e. O#.˛/ for a fixed value of ˛ can
be obtained so easily, we can express the Weibull log-likelihood of Eq. 10.3.2 as
l!.˛/ D l. O#.˛/; ˛/, which is a function of a single parameter ˛. This form of the
likelihood function is known as a profile likelihood, since one of the parameters (#)
is replaced with it’s maximum likelihood estimate contingent on a particular value
of the other parameter (˛). So maximizing l!.˛/ will yield the maximum likelihood
estimate of ˛; the m.l.e for # is then O# D .d=V/1= Ǫ . In R, we define the profile
likelihood as follows:

logLikWeibProf <- function(par, tt, status) {
# find log-likelihood for a particular sigma, using mle for mu
sigma <- par
alpha.p <- 1/sigma
dd <- sum(status)
sum.t <- sum(status*log(tt))
sum.t.alpha <- sum(tt^alpha.p)
lambda.p <- (dd/sum.t.alpha)^(1/alpha.p)



10.3 The Weibull Model 143

term.1 <- dd*log(alpha.p) + alpha.p*dd*log(lambda.p)
term.2 <- (alpha.p - 1)*sum.t
term.3 <- (lambda.p^alpha.p)*sum.t.alpha
result <- term.1 + term.2 - term.3
result }

This differs from the function “logLikWeib” of the previous section in that now
“par” is a single number, sigma, and “lambda.p” is defined using a particular value
of alpha.p = 1 / sigma. To obtain the m.l.e. for & we find the maximum of the profile
log-likelihood as follows:
> resultProf <- optim(par=c(2.280), fn=logLikWeibProf, method=

"L-BFGS-B",
+ lower=c(0.01), upper=c(5), control=list(fnscale = -1),
+ tt=ttr, status=relapse)
> sigma.hat <- resultProf$par
> sigma.hat
[1] 2.041063

The resulting estimate, O& D 2:041063, is the same as we obtained in the previous
section. To obtain O#and O" D 1= O#, we do the following:
> dd <- sum(relapse)
> sigma <- resultProf$par
> alpha.p <- 1/sigma.hat
> sum.t.alpha <- sum(ttr^alpha.p)
> lambda.p <- (dd/sum.t.alpha)^(1/alpha.p)
> mu.hat <- -log(lambda.p)
> mu.hat
[1] 4.656329

The resulting estimate, O" D4.656329, is also the same as we obtained in the
previous section.

We may plot the profile likelihood in terms of sigma as follows, for a range of
values of & from 1.0 to 5.0:

sigma.list <- (100:500)/100
n.list <- length(sigma.list)
logLik.list <- rep(NA, n.list)
for (i in 1:n.list) {

logLik.list[i] <- logLikWeibProf(par=sigma.list[i], ttr,
relapse) }

plot(logLik.list ~ sigma.list, type="l", xlab="sigma",
ylab="profile log-likelihood")

abline(v=sigma.hat, col="gray")

The profile log-likelihood is shown in Fig. 10.3.

10.3.4 Selecting a Weibull Distribution to Model Survival Data

We can fit a Weibull distribution to a set of data to obtain maximum likelihood
estimates of the two parameters, as we have seen. In some cases, it may be desirable
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Fig. 10.3 Profile
log-likelihood for a Weibull
distribution fitted to the
pharmcoSmoking data, as a
function of sigma. The
vertical line indicates the
m.l.e. at & D 2:041
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to find a Weibull distribution that matches the survival data at two specified time
points. Suppose the two time points are t1 and t2, and the estimated survival
points (from the Kaplan-Meier survival curve) at these two points are s1 and s2,
respectively. Let us define y1 D log Œ" log.s1/! and y2 D log Œ" log.s2/!. Using
Eq. 10.3.1, we have

y1 D ˛ log.#/C ˛ log.t1/
y2 D ˛ log.#/C ˛ log.t2/

Solving these two simultaneous linear equations, we get

Q̨ D y1#y2
log.t1/#log.t2/

Q# D exp
n
y2 log.t1/#y1 log.t2/

y1#y2

o
:

To illustrate, consider the pharmacoSmoking data, and let’s find a Weibull
distribution that matches the Kaplan-Meier estimate of the survival distribution for
the “patchOnly” group at 4 and 12 weeks (28 and 84 days). In R, we first find
the Kaplan-Meier estimate, which is in “result.surv”, and then find the survival
estimates at times 28 and 84 days, which we put into “result.summ”. Then we extract
those two times (“t.vec”) and the survival estimates (“s.vec”), and display them. In
the following, we summarize the survival results at 28 and 84 days, that is, 4 and 12
weeks, respectively (assuming we have attached the pharmacoSmoking data):

> result.surv <- survfit(Surv(ttr, relapse) ~ 1,
+ subset={grp =="patchOnly"})
> result.summ <- summary(result.surv, time=c(28, 84))
> t.vec <- result.summ$time
> s.vec <- result.summ$surv
> data.frame(t.vec, s.vec)

t.vec s.vec
1 28 0.437500
2 84 0.265625
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Next, we use the “Weibull2” function in F. Harrell’s “Hmisc” package to produce a
Weibull function that matches these two points,
library(Hmisc)
pharmWeib <- Weibull2(t.vec, s.vec)

The function “pharmWeib” computes the Weibull survival estimates for a range of
time values,
t.vals <- 1:200
s.vals <- pharmWeib(t.vals)

(The internal parametrization used by the “Weibull2” function is different fromwhat
we use in this book, but this doesn’t matter, since of course it produces the same
survival estimates.)

Next, let us obtain the predicted Weibull survival curve based on maximum
likelihood estimates of the Weibull parameters.
model.pharm.weib.basic <- survreg(Surv(ttr, relapse) ~ 1,

dist="weibull", subset={grp =="patchOnly"} )
mu.hat <- model.pharm.weib.basic$coefficients
sigma.hat <- model.pharm.weib.basic$scale
lambda.hat <- exp(-mu.hat) # " 1 / scale"
alpha.hat <- 1/sigma.hat # "shape"
s.mle.vals <- 1 - pweibull(t.vals, shape=alpha.hat,

scale=1/lambda.hat)

Finally, we plot the survival estimates in Fig. 10.4
plot(result.surv, conf.int=F, xlab="Days to relapse",

ylab="Survival probability")
lines(s.mle.vals ~ t.vals, col="blue")
lines(s.vals ~ t.vals, col="red")
points(t.vec, s.vec, col="red")
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Fig. 10.4 Survival curve estimates for the “patch only” group in the pharmacoSmoking data. The
step function is the Kaplan-Meier estimate. The blue line is the Weibull estimate of the survival
curve based on maximum likelihood estimates of the parameters. The red line is the Weibull
estimate that matches the Kaplan-Meier estimate at 24 and 84 days; the two matching points are
indicated by solid red circles
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In the next chapter we will use the estimated Weibull function for simulating
survival data for computing the power to detect a difference in a randomized study.

10.3.5 Comparing Two Weibull Distributions Using
the Accelerated Failure Time and Proportional
Hazards Models

Suppose now that we have two groups of survival data, one of patients who received
an experimental treatment and one of patients who received a control. In prior
chapters the quantity we used to compare the two distributions was the hazard
ratio eˇ which, under the proportional hazards assumption, was assumed not to
change over time. If the experimental treatment were effective in increasing survival,
the hazard ratio would be less than one, and the log-hazard ratio ˇ would thus be
negative. An alternative way of comparing a treatment group to a control group,
often used with parametric models, is called the accelerated failure time (AFT)
model (sometimes referred to as the accelerated life model). In this model we
assume that the survival time for a treated patient is a multiple e* of what the survival
time would have been had the patient received the control treatment. A key property
of the AFTmodel is this: if the treatment is effective, the accelerated time coefficient
e*will be greater than one, and thus * will be positive.

Formally, the survival distributions for the accelerated life model are given by
S1.t/ D S0.e#* t/ and the hazards are given by h1.t/ D e#*h0.e#* t/. In the case of
the Weibull distribution, we have

h1.t/ D e#*h0.e#* t/ D e#* # 1
&
e# "0

& .e#* t/
1
& #1

Rearranging, we have

h1.t/ D e# *
& # 1
&

# e# "0
& t

1
& #1 D e# *

& h0.t/

That is, in the case of the Weibull distribution, the accelerated life model is
equivalent to a proportional hazards model with proportionality factor eˇ D e# *

& .
Thus, the proportional hazards model and the accelerated life model are equivalent
in the case of a Weibull distribution, with ˇ D "*=& . Furthermore, it is possible to
show that the Weibull distribution is the only distribution with this property [11].

The pharmacoSmoking data, comparing the triple therapy treatment group to the
patch treatment provides an illustration of these principles. The Weibull model may
be used to compare the two groups as follows, using the “survreg” function in the
survival package:
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> result.survreg.grp <- survreg(Surv(ttr, relapse) ~ grp,
+ dist="weibull")
> summary(result.survreg.grp)

Value Std. Error z p
(Intercept) 5.286 0.3320 15.92 4.59e-57
grppatchOnly -1.251 0.4348 -2.88 4.00e-03
Log(scale) 0.689 0.0911 7.56 3.97e-14

Scale= 1.99

We see that O* D "1:251, indicating that the “patch only” treatment group has
shorter times to relapse than the triple therapy group by a factor of e O* D e#1:251 D
0:286. The estimate of the scale parameter is O& D 1:99. Thus, if we want to compare
the patch group to the triple therapy group using a proportional hazards model, the
log proportional hazards is given by Ǒ D " O*= O& D 1:251=1:99 D 0:629. We may
compare this to the results of fitting a Cox proportional hazards model as follows:

> result.coxph.grp <- coxph(Surv(ttr, relapse) ~ grp)
> summary(result.coxph.grp)

n= 125, number of events= 89

coef exp(coef) se(coef) z Pr(>|z|)
grppatchOnly 0.6050 1.8313 0.2161 2.8 0.00511 **

The corresponding estimate of the log hazards ratio from the Cox model, 0.6050, is
near (but not the same as) 0.629, the estimate from the Weibull model.

Notice that the Cox model output shows only one parameter estimate, that for
the effect of the patch (as compared to the triple therapy). The Weibull model
results in three parameter estimates, one of which is also a comparison of the
patch to the triple therapy. The other two estimates represent the baseline Weibull
distribution. As discussed in previous chapters, the Cox proportional hazards model
does not produce an “intercept” term among the coefficient estimates; if there were
an intercept term, it would cancel out of the partial likelihood just as the baseline
hazard does. (Once a Cox model has been fitted, it is of course possible to obtain
an estimate of the baseline hazard, as discussed in Sect. 5.5.) Parametric survival
models, by contrast, include an intercept term, which can be used to determine the
baseline hazard function. For the pharmacoSmoking data, with “grp” as a predictor,
the baseline hazard function is a Weibull distribution with parameter estimates
O"0 D 5:286 and the scale parameter estimate, which is the same for both groups,
is O& D 1:99. To obtain the estimated survival curve for the triple-therapy group,
which here is the baseline group, we compute the parameters of the baselineWeibull
distribution, Ǫ D 1= O& D 1=1:99 D 0:502 and O#0 D e# O" D e#5:286 D 0:00506. The
estimated baseline survival function is then

OS0.t/ D e#.O#t/1=O&
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We may obtain the baseline Weibull coefficient estimates in R as follows:

mu0.hat <- result.survreg.grp$coef[1]
sigma.hat <- result.survreg.grp$scale
alpha.hat <- 1/sigma
lambda0.hat <- exp(-mu0.hat)

From these we compute the baseline survival function,

tt.vec <- 0:182
surv0.vec <- 1 - pweibull(tt.vec, shape=alpha,scale=1/

lambda0.hat)

recalling the “scale” terminology for the “pweibull” function is quite different from
the “scale” term in the “survreg” function.

To obtain the Weibull function for the comparison group (here the “patchOnly”
group), we note that the proportional hazards constant is e# O*= O& D e#0:629 D 0:533.
That is, the hazard for the “patchOnly” group is 0.533 times the hazard for the
“combination” group. The survival function for the combination group is S1.t/ D
fS0.t/ge

!O*=O&
. In R, O* is the coefficient for the “grp” term, and is the second element

of “coef”,

gamma.hat <- result.survreg.grp$coef[2]
surv1.vec <- surv0.vec^(exp(-gamma.hat/sigma.hat))

It is helpful to compare these survival estimates to those from the Cox propor-
tional hazards model. The latter survival estimates are obtained as follows:

coxph.surv.est <- survfit(result.coxph.grp,
newdata=data.frame(list(grp=c("combination","patchOnly"))))

In the call to “survfit”, we have created a data frame for the “grp” variable, and
use that data along with the results of the Cox proportional hazards model to obtain
the predicted survival curves. We may plot the Cox-based survival curves and the
Weibull-based survival curves on the same plot,

plot(coxph.surv.est, col=c("red", "black"))
lines(surv0.vec ~ tt.vec, col="red")
lines(surv1.vec ~ tt.vec)

The resulting plot, shown in Fig. 10.5, shows the Cox model estimates as step
functions and the Weibull-based estimates as smooth curves.

10.3.6 A Regression Approach to the Weibull Model

An alternative way of looking at a Weibull accelerated failure time model comparing
two groups is by modeling the log survival time as a location-scale model, as
follows:

log.t/ D "C *zC &+! (10.3.3)
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Fig. 10.5 Comparisons of
combination therapy (red) vs.
patch (black) for time to
smoking relapse using the
pharmacoSmoking data. The
step functions are survival
function estimates obtained
using a Cox proportional
hazards model, and the
smooth curves are obtained
using a Weibull model
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where + follows a unit exponential distribution, which leads to +! D log " having
what is called an extreme value distribution. This formulation suggests that other
choices for the distribution of + can lead to other parametric survival models, as will
be discussed in Sect. 10.4.

10.3.7 Using the Weibull Distribution to Model Survival Data
with Multiple Covariates

Wemay use “survfit” to accommodatemultiple covariates into aWeibull accelerated
failure time model in a straightforward manner. For example, for the pharma-
coSmoking data, we previously (in Chap. 7) settled on a Cox proportional hazards
model with treatment group, age, and employment status as predictors. The output
of that model is as follows:

> modelAll2.coxph <- coxph(Surv(ttr, relapse) ~ grp + age +
+ employment)
> summary(modelAll2.coxph)

n= 125, number of events= 89
coef exp(coef) se(coef) z Pr(>|z|)

grppatchOnly 0.60788 1.83654 0.21837 2.784 0.00537 **
age -0.03529 0.96533 0.01075 -3.282 0.00103 **
employmentother 0.70348 2.02077 0.26929 2.612 0.00899 **
employmentpt 0.65369 1.92262 0.32732 1.997 0.04581 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Here, a positive coefficient indicates higher hazard, and thus worse survival. For
example, the coefficient for “patchOnly” is 0.608, which indicates that the hazard
is higher for this treatment group than for the triple therapy group, by a constant
factor of e0:60788 D 1:83654. We may include these covariates in a Weibull model
as follows:
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1 > model.pharm.weib <- survreg(Surv(ttr, relapse) ~ grp + age +
2 + employment, dist="weibull")
3 > summary(model.pharm.weib)
4 Value Std. Error z p
5 (Intercept) 2.4024 0.9653 2.49 1.28e-02
6 grppatchOnly -1.1902 0.4133 -2.88 3.98e-03
7 age 0.0697 0.0203 3.43 6.02e-04
8 employmentother -1.3890 0.5029 -2.76 5.74e-03
9 employmentpt -1.3143 0.6132 -2.14 3.21e-02

10 Log(scale) 0.6313 0.0900 7.02 2.26e-12
11
12 Scale= 1.88
13 Weibull distribution
14 Loglik(model)= -454.1 Loglik(intercept only)= -466.1
15 Chisq= 23.96 on 4 degrees of freedom, p= 8.2e-05

Even though we have fit a survival model to the same data using the same predictors,
the output of “survreg” differs from that of “coxph” in two important ways.
The first difference is that “coxph” produces estimates for the predictors only,
whereas “survreg” produces not only those estimates but also two more, one for
the “intercept” (line 5) and one for “Log(scale)” (line 10). These two parameters
define the baseline Weibull survival model. The scale parameter estimate, 1.88, is
also printed in line 12; the log of this, unsurprisingly, is 0.6313, and is printed in
line 10.

The second important difference is that the parameter estimates from “survreg”
are accelerated failure time constants. That is, for “patchOnly” (line 6), the estimate
"1:1902 is negative, and indicates that patients receiving this treatment have shorter
times to relapse than do the patients receiving triple therapy, and the “acceleration”
factor is e#1:1902 D 0:304. (Since this factor is less than one, it might be more
properly referred to as deceleration.)

Since for a Weibull distribution, the accelerated failure time model is equivalent
to a proportional hazards model, we may convert the acceleration coefficients to
proportional hazards estimates to better compare them to those obtained from the
Cox partial likelihood model. As discussed earlier, if *j represents the jth parameter
from the accelerated failure time model, then ˇj D "*j=& represents the jth
parameter from a proportional hazards model, where & is the scale. Converting the
output from “survreg” to proportional hazards is thus straightforward in principle,
but the mechanics of doing in R are rather involved. First, we need to extract
the coefficient estimates from “model.pharm.weib”, which is a vector of seven
elements. Then select the coefficient estimates, which are elements 2 through 5,

weib.coef.all <- model.pharm.weib$coef
weib.coef <- weib.coef.all[2:5]

To get the proportional hazards estimates, we need to extract the estimate of the
scale factor, “model.pharm.weib$scale”, and then switch the sign, and divide,

weib.coef.ph <- -weib.coef/model.pharm.weib$scale

The vector “weib.coef.ph” contains the proportional hazards parameter estimates
from the Weibull model.
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Extracting the coefficients from the Cox (partial likelihood) model is somewhat
simpler,
coxph.coef <- model.pharm.coxph$coef

We may use the “data.frame” function to assemble the estimates and standard errors
in a table as follows:
> data.frame(weib.coef.ph, coxph.coef)

weib.coef.ph coxph.coef
grppatchOnly 0.63301278 0.60788405
age -0.03708786 -0.03528934
employmentother 0.73878031 0.70347664
employmentpt 0.69903157 0.65369019

The parameter estimates from the two models are quite similar, differing by no more
than 7%.

10.3.8 Model Selection and Residual Analysis with Weibull
Survival Data

Many of the facilities for model selection and residual analysis that we discussed
in Chaps. 6 and 7 may also be used with Weibull modeling of survival data.
For example, we may fit a model with all covariates as predictors, and then use
backwards stepwise regression, using the AIC as a measure of goodness of fit, as
follows:
modelAll.pharm.weib <- survreg(Surv(ttr, relapse) ~ grp + gender

+ race + employment + yearsSmoking + level
Smoking + age + priorAttempts + longestNoSmoke,
dist="weibull")

model.step.pharm.weib <- step(modelAll.pharm.weib)

The resulting model, with “grp”, “age”, and “employment”, is the same as we
discussed in the previous section. We may also use the “residuals” function to
compute deviance residuals and deletion residuals,
resid.deviance <- residuals(model.pharm.weib, type="deviance")
par(mfrow=c(2,2))
plot(resid.deviance ~ age)
smoothSEcurve(resid.deviance, age)
title("Deviance residuals\nversus age")

plot(resid.deviance ~ grp)
title("Deviance residuals\nversus treatment group")

plot(resid.deviance ~ employment)
title("Deviance residuals\nversus employment")

The results are shown in Fig. 10.6. Note that the function “residuals”, when applied
to a survreg object such as “modelAll.pharm.weib”, recognizes the type of the
object, and actually calls “residuals.survreg”.
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Fig. 10.6 Deviance residual plots from Weibull model fit to the pharmacoSmoking data

We see that the residual distributions of both “grp” and “employment” are
reasonably comparable, indicating that these variables are modeled successfully.
As for “age”, the distribution may be consistent with a linear model, when one
considers the width of the 95% confidence intervals. These results are similar to the
diagnostics we saw with the Cox proportional hazards model, as shown in Fig. 7.2.

The effects of individual patients on the estimate of the coefficient for “age” may
be computed as follows:

resid.dfbeta <- residuals(model.pharm.weib, type="dfbeta")
n.obs <- length(ttr)
index.obs <- 1:n.obs
plot(resid.dfbeta[,3] ~ index.obs, type="h",

xlab="Observation", ylab="Change in coefficient",
ylim=c(-0.0065, 0.004))

abline(h=0)
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Fig. 10.7 “dfbeta” index plot for “age” in the Weibull model fit to the pharmacoSmoking data

The result is shown in Fig. 10.7. Compared to the corresponding plot for the
Cox model (Fig. 7.3), we see that patients 46 and 68 are again influential, as is
patient 114.

10.4 Other Parametric Survival Distributions

We may construct other accelerated failure time models by choosing other distribu-
tions for + in Eq. 10.3.3. For example, if + follows a standard normal distribution, the
survival times T follow a log-normal distribution. We may fit this model as follows:

> model.pharm.lognormal <- survreg(Surv(ttr, relapse) ~ grp +
age +

+ employment, dist="lognormal")
> summary(model.pharm.lognormal)

Value Std. Error z p
(Intercept) 1.6579 1.0084 1.64 1.00e-01
grppatchOnly -1.2623 0.4523 -2.79 5.25e-03
age 0.0648 0.0203 3.20 1.39e-03
employmentother -1.1711 0.5316 -2.20 2.76e-02
employmentpt -0.9543 0.7198 -1.33 1.85e-01
Log(scale) 0.8754 0.0796 10.99 4.15e-28
Scale= 2.4
Log Normal distribution
Loglik(model)= -451.5 Loglik(intercept only)= -461.7

Chisq= 20.4 on 4 degrees of freedom, p= 0.00042

These parameter estimates are not from a proportional hazards model.
If " has a logistic distribution, with survival distribution given by

S.u/ D 1

1C eu
;
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then T has a log-logistic distribution. This model may be fitted using “survreg” as
follows:

> model.pharm.loglogistic <- survreg(Surv(ttr, relapse) ~ grp +
+ age + employment, dist="loglogistic")
> summary(model.pharm.loglogistic)

Value Std. Error z p
(Intercept) 1.9150 0.9708 1.97 4.85e-02
grppatchOnly -1.3260 0.4588 -2.89 3.85e-03
age 0.0617 0.0196 3.15 1.66e-03
employmentother -1.2605 0.5392 -2.34 1.94e-02
employmentpt -1.0991 0.7050 -1.56 1.19e-01
Log(scale) 0.3565 0.0884 4.03 5.47e-05
Scale= 1.43
Log logistic distribution
Loglik(model)= -453.4 Loglik(intercept only)= -463.6

Chisq= 20.47 on 4 degrees of freedom, p= 4e-04

With this distribution, the odds of survival are proportional,

S1.t/
1 " S1.t/

D ezˇ
S0.t/

1 " S0.t/
:

Just as the proportional hazards and accelerated lifetime models are equivalent for
the Weibull distribution, the proportional odds and accelerated lifetime models are
equivalent for the log-logistic distribution. The parameter estimates obtained from
all “survreg” parametric procedures are for accelerated failure time models.

10.5 Additional Note

1. Many texts provide detailed discussions of the use of parametric models in
survival analysis. Examples include Cox and Oakes [11], Kalbfleisch and
Prentice [34], Klein and Moeschberger [36], and Tableman and Kim [65].

Exercises

10.1. Consider the “hepatoCellular” data in the “asaur” package. Use the method
of Sect. 10.3.1 to assess how appropriate a Weibull distribution is for (a) overall
survival, and (b) recurrence-free survival.

10.2. Test for the effect of CXCL17 on overall survival. Which of the three
measures is the best predictor? Repeat for recurrence-free survival.



10.5 Additional Note 155

10.3. Using the covariates with complete data, use the “step” function to find a well-
fitting model with low AIC for overall survival. Repeat for recurrence-free survival.
Which covariates are included in both models?

10.4. Using the “ashkenazi” data in the “asaur” package, fit a Weibull distribution
to the women with the “wild type” (non-mutant) BRCA genotype, matching the
Kaplan-Meier survival curve at ages 45 and 65. Then predict the probability that a
woman with the wild type BRCA genotype will develop breast cancer before the
age of 70.



Chapter 11
Sample Size Determination for Survival Studies

Deciding how many subjects to include in a randomized clinical trial is a key
component of its design. In the classical hypothesis testing framework, for any
type of outcome, one must specify the effect change one is aiming for, the inherent
variability in the test statistic, the significance level of the test, and the desired power
of the test to detect the effect change. In survival analysis, there are additional factors
that one must specify regarding the censoring mechanism and the particular survival
distributions in the null and alternative hypotheses. First, one needs either to specify
what parametric survival model one is using, or that the test will be semi-parametric,
e.g., the log-rank test. This allows for determining the number of deaths (or events)
required to meet the power and other design specifications. Second, one must, for
administrative reasons, provide an estimate of the number of patients that need to
be entered into the trial to produce the required number of deaths. We shall assume
that the clinical trial is run as described in Chap. 1, where patients enter a trial over
a certain accrual period of length a, and then followed for an additional period of
time f known as the follow-up time. Patients still alive at the end of follow-up are
censored. We will describe sample size methods for single arm clinical trials and
then for two arm clinical trials.

11.1 Power and Sample Size for a Single Arm Study

In a study with a single arm, we assume for planning purposes that the survival
times follow an exponential distribution with hazard h.tI#/ D # and survival
distribution S.t;#/ D e##t. We shall test H0 W # D #0 versus HA W # D #A:
The null hypothesis mean, "0 D 1=#0, would correspond to the mean survival
one has observed in the past for the standard therapy, and the alternative hazard,
"A D 1=#A is a (presumably) larger mean survival that we aim to find with a
new, experimental therapy. Thus, the treatment ratio we would like to detect may
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be written as , D "A="0 D #0=#A. After the trial is completed, we obtain a series
of independent survival times t1; t2; : : : ; tn and censoring indicators ı1; ı2; : : : ; ın,
where n is the total number of subjects in the trial. Our ultimate goal is to determine
howmany patients we need to detect a certain hazard ratio, with a specified power
and significance level. The derivation of the formula is similar to that for tests
concerning the mean of normally distributed observations, but some adjustments
are needed to account for the presence of censoring. The main adjustment is that
our sample size formula will directly specify d, the number of deaths needed to
achieve the desired power. Once we have d, we use a separate method to find the
number of patients n needed to produce the required d.

In practice, the null and alternative hypotheses may be expressed in terms of
either median survival or survival probability at a specified time t. A median survival
may be converted into a hazard rate by re-expressing 0:5 D e##t as # D Œlog.2/! =t.
Similarly, a survival rate p at time t may be written as p D e##t, which may
be expressed as # D " Œlog.p/! =t. These comparisons are strictly valid only if
the survival distribution is exponential. However, for other survival distributions,
the conversions between median survival and survival rates may provide reasonable
approximations when survival rates are in the neighborhood of 50%.

The most direct way to derive a sample size formula is based on a Wald test,
but the resulting formula varies depending on the parametrization of the likelihood.
The simplest derivation uses the parameter ) D log ."/ D " log .#/. Then we may
express the log-likelihood function of Sect. 2.6 as follows:

l.)/ D d log# " #V D ")d " Ve#) (11.1.1)

By following the development in Sect. 2.6, the m.l.e. may be shown to be O) D
log .V=d/ and var. O)/ Ð 1=d, where d D P

ıi and V D P
ti are the number of

deaths and the total patient-time, respectively.
We will use O) as our test statistic, and reject H0 in favor of HA if O) > k

for some constant k. The significance level of the test, or Type I error rate, is
˛ D Pr

#
O) > kj) D )0

$
. That is, the constant k is chosen so that the probability

of rejecting the null hypothesis is ˛, assuming that the null hypothesis is true. Using
a normalizing transformation,

Z D
O) " "

1=
p
d

we have

˛ D Pr
%
Z >

k " )0
1=

p
d

&
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If z˛ is the value of a standardized normal distribution that cuts off an area ˛ to
the right, then

z˛ D k " )0

1=
p
d

and hence

k D )0 C
z˛p
d

Now let us consider what happens under the alternative hypothesis, where ) D
)A. The power of the test is given by

1 " ˇ D Pr
#
O) > kj) D )A

$
D Pr

%
Z >

k " )A

1=
p
d

&

or equivalently,

z1#ˇ D "zˇ D
p
d .k " )A/

Substituting the value of k, we have

"zˇ D
p
d
%
)0 C

z˛p
d

" )A

&

Solving for d we have

d D
'
zˇ C z˛

(2

.)A " )0/
2
D
'
zˇ C z˛

(2

.log,/2
(11.1.2)

since log.,/ D log.#0/" log.#A/.
This gives us the number of deaths needed to achieve the specified power, not

the number of patients. This derivation method is based on the parameter estimate
normalized by its standard deviation, which produces the Wald test statistic. One
aspect of this test is that different parametrizations lead to somewhat different
formulas for the sample size. This dependence on parametrization may be largely
avoided by working directly with the likelihood ratio statistic. Now, for fixed d,
V D P

ti has a gamma distribution with index d and scale parameter #. Cox and
Oakes [11], following Epstein and Sobel [16], show that

W D 2d#
O#

Ï '22d
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although this result is approximate for general censoring patterns. Under H0 W # D
#0, we need to find a constant k such that

˛ D Pr
#
1= O# > kj# D #0

$
D Pr .W > 2dk#0/

and hence '22d;˛ D 2dk#0. Finally,

k D
'22d;˛
2d#0

: (11.1.3)

The power of the test is given by

1 " ˇ D Pr
#
1= O# > kj# D #A

$
D Pr .W > 2dk#A/

where

k D
'22d;1#ˇ
2d#A

(11.1.4)

Equating Eqs. 11.1.3 and 11.1.4, we have

, D #0

#A
D

'22d;˛

'22d;1#ˇ
(11.1.5)

For specified ˛, power 1"ˇ, and ratio,, we may solve this for the required number
of deaths, d.

In R, we may compute the number of deaths based on Eq. 11.1.2 using the
following function:

expLogMeanDeaths <- function(Delta, alpha, pwr) {
z.alpha <- qnorm(alpha, lower.tail=F)
z.beta <- qnorm(1-pwr, lower.tail=F)
num <- (z.alpha + z.beta)^2
denom <- (log(Delta))^2
dd <- num/denom
dd }

We use the “qnorm” function to compute z˛and zˇ , and the final result is the number
of deaths required to detect a hazard ratio , with significance level ˛ and power
1"ˇ. To use the likelihood ratio method, we first compute the hazard ratio, given
˛, 1 " ˇ, and a specified number of deaths d :

expLikeRatio <- function(d, alpha, pwr) {
num <- qchisq(alpha, df=(2*d), lower.tail=F)
denom <- qchisq(pwr, df=(2*d), lower.tail=F)
Delta <- num/denom
Delta }
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Here we use the “qchisq” function to compute '22d;˛ and '
2
2d;1#ˇ . To get the number

of deaths d for a specified ,, we define a new function “LRD” internally which is
zero at the required number of deaths:

expLRdeaths <- function(Delta, alpha, pwr) {
LRD <- function(x, alpha, pwr)

expLikeRatio(x, alpha, pwr) - Delta
result <- uniroot(f=LRD, lower=1,upper=1000,

alpha=alpha, pwr=pwr)
result$root }

Suppose that we are designing a Phase II oncology trial where we plan a 5%
level (one-sided) test, and we need 80% power to detect a hazard ratio of 1.5. Once
the above functions have been entered into R, we can find the required number of
deaths as follows:

> expLRdeaths(1.5, 0.05, 0.8)
[1] 36.33916

> expLogMeanDeaths(1.5, 0.05, 0.8)
[1] 37.60635

That is, we would need (rounding up) 38 deaths according to the log mean method
(function “expLogMeanDeaths”), and 37 deaths according to the likelihood ratio
method (function “expLikeRatio”). The twomethods give similar results over a wide
range of specifications (Narula and Li [53]).

11.2 Determining the Probability of Death in a Clinical Trial

In the previous section, we saw how to compute the required number of deaths
to satisfy the power, significance, and survival difference design requirements of
a trial. But as we have seen, in survival analysis, many subjects are still alive at
the time of analysis. For administrative reasons, we usually need to specify how
many patients need to be entered onto the trial, not how many will die. Thus, we
need to provide an estimate of the proportion - of patients who will die by the
time of analysis. If all patients entered at the same time, we would simply have
- D 1"S.t;#/, where t is the follow-up time. However, patients actually enter over
an accrual period of length a and then, after accrual to the trial has ended, they are
followed for an additional time f . So a patient who enters at time t D 0 will have
failure probability -.0/ D 1 " S.aC f ;#/, since a patient who enters at time t D 0
will have the maximum possible follow-up time a C f . But a patient who enters
at time a, which is the end of the accrual period, will have the minimum possible
follow-up time f . Thus, that patient will have failure probability -.a/ D 1"S.f ;#/.
This is illustrated in Fig. 11.1

If patients were entered in equal numbers at times 0 (curve A) or a (curve B) only,
then the probability of death would be .-.0/C -.a// =2. A much more realistic
scenario is that the patients enter uniformly between times 0 and a, so that the
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Fig. 11.1 Probability of
death for subjects entering at
the beginning (curve A) or
the end (curve B) of the
accrual period. The
probability of death is given
on the right axis
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patient entry follows a Uniform.0; a/ distribution. Then the probability of death
- is obtained by averaging over these times, so that a patient that enters at time t is
followed for additional time aC f " t. This idea may be expressed by the following
integral, which uses the fact that the probability of death given the patient enters at
time t is 1 " S.aC f " tI#/,

- D
aˆ

0

1

a
Pr
'
death | enter at time t

(
dt

or just

- D
aˆ

0

1

a
.1 " S.aC f " tI#// dt (11.2.1)

Using the variable transformation u D aC f " t and re-arranging, we have

- D 1 " 1

a

aCfˆ

f

S.uI#/du (11.2.2)

Since we are assuming an exponential distribution, we have S.uI#/ D e##u, and we
have, using basic integration,

- D 1 " 1
a

´ aCf
f e##udu D 1 " 1

a#

˚
e##f " e##.aCf /

)
: (11.2.3)
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The following function uses this expression to compute the probability of death:

prob.death <- function(lambda, accrual, followup) {
probDeath <- 1 - (1/(accrual*lambda))*

(exp(-lambda*followup) - exp(-lambda*(accrual + followup)))
probDeath
}

Consider again our example in the previous section where we plan a single
sample clinical trial with a 5% significance level (one-sided) test, and we need
80% power to detect a hazard ratio of 1.5. Suppose that the null hypothesis rate
is #0 D 0:15, so that the alternative hypothesis hazard rate is #1 D #0=, D
0:15=1:5 D 0:10. We suppose now that the accrual period is a D 2 years and that the
follow-up period is an additional f D 3 years. Previously we found that 38 deaths
were needed. To obtain an estimate of the number of patients needed to produce this
number of deaths, we first compute the probability of death under H1 W # D 0:10.

> prob.death(lambda=0.10, accrual=2, followup=3)
[1] 0.3285622

Then the number of patients needed is approximately 38=0:3285622D 115:6, or
116 after rounding up. This estimate depends critically not only on the assumption
of an exponential distribution, but also on the unknown value of the exponential
parameter #. Using a specific value, such as #1 D 0:10, is helpful in the planning
stage of the trial, since administrators will need an estimate of the number of patients
that will be needed. However, to maintain the integrity of the design, it would be
preferable to tie the stopping rule for the trial to the number of deaths, 38, rather
than to the estimated total number of patients, 116.

11.3 Sample Size for Comparing Two Exponential Survival
Distributions

We now consider a comparative clinical trial, where an experimental regimen is
being compared to a standard, control regimen. Suppose that we are going to test
the null hypothesis H0 W S0 ' S1 versus the alternative HA W S0 < S1 for all
t, where S0 and S1 are exponential survival distributions with hazards #0 and #1,
for the control and experimental regimens, respectively. To determine the required
sample size, we consider the hazard ratio , D #0=#1. Now #0 and #1 are the
hazards for a control and experimental treatments, and we presume that the latter
hazard is the smaller one, and that our test may be viewed as the one-sided test of
H0 W , D 1 versus HA W , > 1. This well-known case was developed by Bernstein
and Lagakos [6], Rubenstein et al. [58] and others. We let p denote the proportion of
patients randomized to the control group. Typically one uses equal randomization,
so that p D 0:5, but this is not required. We denote by n the total number of patients
in the trial, and we have n0 D np and n1 D n.1 " p/ control and experimental
patients, respectively. When the trial has been completed, we will observe d0 and d1
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deaths in the control and experimental groups, and total patient times of V0 D
P

t0i
and V1 D

P
t1i, respectively. We know from Sect. 2.6 that the maximum likelihood

estimates of the hazards are O#0 D d0=V0 and O#1 D d1=V1. To compare the two
distributions, it is more convenient to use ı D log, D log#0 " log#1, since the
log scale transformed value will be more symmetric. One may show that, based on
maximum likelihood theory,

var. Oı/D&2D
%

1

E.d0/
C 1

E.d1/

&
D 1

n0-0
C 1

n1-1
D 1

np.1" p/
˘ p-0 C .1 " p/-1

-0-1
:

where -0 and -1 are the probabilities of death in the control and treatment groups,
respectively. If we define a new parameter Q- as follows,

Q- D
%
p-0 C .1 " p/-1

-0-1

&#1
D
%

p
-1

C 1 " p
-0

&#1
(11.3.1)

we see that Q- is a weighted harmonic mean of -0 and -1, and thus may be viewed
as an average probability of death across the control and treatment groups. The
harmonic mean Q- is an approximation to the weighted mean N- D p-0C .1" p/-1.
Thus, we have

var. Oı/D&2D 1

np.1" p/
˘ Q-#1

Expressing the test in terms of ı D log,, we reject H0 W ı D 0 in favor of HA W ı >
0 if Oı > k for some constant k. For a one-sided test, we have, following an argument
similar to that in Sect. 11.1,

˛ D Pr
#
Oı > kjı D 0

$
D Pr .Z > k=&/ ;

where & is defined above. Then k D z˛& . The power is given by

1 " ˇ D Pr
#
Oı > kjı

$
D Pr

%
Z >

k " ı

&

&
:

So, z1#ˇ D "zˇ D k#ı
&
. Substituting the value of k, we get zˇ D ı

&
" z˛ , and finally

ı2
'
z˛ C zˇ

(2 D &2 D 1

np.1" p/
˘ Q-#1:

Solving for n, we have

n D
'
z˛ C zˇ

(2

ı2p.1 " p/ Q-
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This states that the required number of patients is the number of deaths,

d D
'
z˛ C zˇ

(2

ı2p.1" p/
(11.3.2)

divided by the probability of death, Q- , as in Sect. 11.2. The only difference here is
that the probability of death is an average (actually the geometric mean) of the death
probabilities in the control and treatment groups (Eq. 11.3.1). The harmonic mean
effectively weights the smaller of the two death probabilities more heavily than does
the sample mean Q-m D .-1 C -0/=2. The consequence is that the harmonic mean
estimate of the required sample size will be larger than the estimate one would
obtain using the sample mean. We will see this in the worked examples.

11.4 Sample Size for Comparing Two Survival Distributions
Using the Log-Rank Test

When the data from a completed comparative clinical trial are analyzed, typically
one uses a log-rank test rather than a test based on the exponential distribution,
for reasons discussed in Chap. 3. Thus, it would seem reasonable to develop a
sample size formula based on the log-rank test. With this test, which is based on
the proportional hazards assumption, the ratio . D #0.t/=#1.t/ is constant, but the
baseline hazard #0.t/ is unspecified. We then use the log-rank statistics U0 and its
variance, which for the ith failure time is given by

v0i D var.d0i/ D
n0in1idi.ni " di/

n2i .ni " 1/

As explained in Chap. 3, these are also the score function of the partial likelihood
and its variance. Assuming that the number of deaths at each failure time is
small compared to the number at risk, and that the proportion p $ n0i=ni of
subjects assigned to the control group is constant over time, we have the following
approximation,

v0i D var.d0i/ D
n0in1idi.ni " di/

n2i .ni " 1/ $ n0in1idi
n2i

$ p.1" p/di

The variance of the log-rank statistic is then approximately

V0 D
DX

iD1
v0i $p.1 " p/

DX

iD1
di D p.1 " p/d
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Then using a standard sample size and power calculation (see Collett [10] and
Schoenfeld [60, 61] for details), we find that the number of events needed to detect
a treatment difference ı D log .#0.t/=#1.t// D log../ with power 1 " ˇ and with
a two-sided level ˛ log-rank test, is identical to that given in Eq. 11.3.2.

d D .z˛=2 C zˇ/
2

p.1 " p/ı2
(11.4.1)

or, if the same number of patients are in both groups, by

d D .z˛=2 C zˇ/
2

ı2=4
(11.4.2)

As in previous cases, this formula gives us the required number of deaths (or events),
not the number of patients. Estimating the number of patients that are needed
requires and estimate of the probability of death, as we saw in Sect. 11.3.

11.5 Determining the Probability of Death
from a Non-parametric Survival Curve Estimate

One way of determining the number of patients needed to produce a particular
number of deaths is to assume that patients enter uniformly over the accrual period,
and that survival is governed by an exponential distribution. Then we can proceed as
in Sect. 11.2. However, if a survival distribution estimate is available for the control
group, say, from an earlier trial, then we can use that, along with the proportional
hazards assumption, to estimate a probability of death without assuming that the
survival distribution is exponential.

Typically, the survival function for the control group of a randomized trial is
a Kaplan-Meier estimate OS0.t/ obtained from a prior study. If we need to detect
a hazard ratio ,, the alternative hypothesis survival function will be, assuming
proportional hazards,

OS1.t/ D
h
OS0.t/

i1=,
: (11.5.1)

Then to compute the expected number of deaths with accrual and followup times a
and f , we use the weighted mean survival,

OS.t/ D pOS0.t/C .1 " p/OS1.t/ (11.5.2)

where p is the proportion of subjects randomly assigned to the control group.
Given a survival function OS.t/ there are a number of ways of evaluating the

integral in Eq. 11.2.2. In most cases we may obtain a good approximation of the



11.5 Determining the Probability of Death from a Non-parametric Survival. . . 167

integral by evaluating OS.t/ for a patient entering at time 0, a=2, and a, and use some
results from elementary integral calculus. One simple approach is the trapezoidal
rule, which uses the areas under two trapezoids defined by the time points 0, a=2,
and a and values that match the integrand at these points. This yields an estimate of
the probability of death given by

-t $ 1 " 1

4

n
OS.aC f /C 2OS

#a
2
C f

$
C OS.f /

o
:

Alternatively, we can use Simpson’s rule, which uses the area under a quadratic
polynomial that matches the integrand at these three points [10, 61]. The underlying
algebra is a bit tedious, but the well-known end result is quite simple:

-s Ð 1 " 1

6

n
OS.aC f /C 4OS

#a
2
C f

$
C OS.f /

o
:

The most accurate method is to evaluate the integral numerically. Since the survival
estimate OS.t/, a weighted mean of bS0.t/ and bS1.t/, is a step function, the integral
may be written as a sum of areas of rectangles under each “step” at the failure
times between a and aC f . To do this we denote all of the ordered failure times by
t.1/; t.2/; : : : ; t.n/. Then the integral in Eq. 11.2.2 may be estimated as follows:

-r D
X

t.i/Wf<t.i/%aCf

h
OS.aC f " t.i// ˘

'
t.i/ " t.i#1/

(i
:

We may illustrate estimating - using the data “gastricXelox” from Chap. 3.
Figure 11.2 illustrates this.

The probability of death may be computed as follows. First, we extract the failure
times and survival probabilities:

library(survival)
result.km <- survfit(Surv(timeMonths, delta) ~ 1,

conf.type="log-log")
timesXe <- result.km$time
survXe <- result.km$surv

Next we set up the accrual and follow-up times, and select the portion of the failure
times in the interval from f to a C f , taking care to include the time f for the first
rectangle:

accrual <- 12
followup <- 6
times.use <- c(followup, timesXe[{timesXe >= followup} &

{timesXe <= accrual + followup}])
surv.use <- summary(result.km, times=times.use)$surv

Finally, we use the “diff” function to get the widths of the rectangles, and “sum” to
complete the evaluation of Eq. 11.2.2:
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Fig. 11.2 Portion of the Kaplan-Meier plot (Fig. 3.6) showing the rectangles needed for the
integral in Eq. 11.2.2

> times.diff <- diff(c(times.use, accrual + followup))
> pi.rec <- 1 - (1/accrual)*sum(times.diff*surv.use)
> pi.rec
[1] 0.5365161

Thus, we estimate, using the “rectangle” method, that -r D 0:536: To do this using
Simpson’s method, we first evaluate the survival function at f , a=2C f , and aC f :

> surv.simpson <- summary(result.km,
+ times=c(followup, accrual/2 + followup, accrual+followup))

$surv
> surv.simpson
[1] 0.6458333 0.4782609 0.3034080

Then we evaluate the probability of death:

> pi.simpson <- 1 -
+ (1/6)*(surv.simpson[1] + 4*surv.simpson[2] + surv.simpson[3])
> pi.simpson
[1] 0.5229525

Thus, our estimate of the probability of death using this method is -s D 0:523,
which is close to the rectangle method estimate -e D 0:536.

However we estimate the probability of death - , the number of patients needed
for the trial will be estimated by n D d=- , where d is the required number of deaths.
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11.6 Example: Calculating the Required Number of Patients
for a Randomized Study of Advanced Gastric Cancer
Patients

Suppose now that we need to design a two-arm randomized clinical trial to test
the effect of a new therapy to Xelox in patients with advanced gastric cancer. For
the control arm survival distribution we use the PFS survival curve in Fig. 3.3, and
we wish to have 80% power to detect an alternative hazard ratio , D 2 (for an
alternative experimental therapy) using a 2.5% level one-sided log-rank test. We
again assume that we will accrue patients for 12 months and follow them for an
additional 6 months. We first determine the number of events that we require, using
the following R function:

TwoArmDeaths <- function(Delta, p=0.5, alpha=0.025, pwr=0.8) {
z.alpha <- qnorm(alpha, lower.tail=F)
z.beta <- qnorm(1-pwr, lower.tail=F)
num <- (z.alpha + z.beta)^2
denom <- p*(1-p)*(log(Delta))^2
dd <- num/denom
dd }

The number of deaths is as follows:

> TwoArmDeaths(Delta=2, p=0.5, alpha=0.025, pwr=0.8)
[1] 65.34566

That is, we need 66 events total.
To determine the probability of death under the alternative hypothesis, we take

the survival function defined by “surv.use” in the previous section, and compute the
average survival according to Eqs. 11.5.1 and 11.5.2:

Delta <- 2
surv.alt <- surv.use^(1/Delta)
surv.avg <- 0.5*surv.use + 0.5*surv.alt

The exact estimate of the probability of death is obtained as before, using
“surv.avg” in place of “surv.use”:

> pi.exact <- 1 - (1/accrual)*sum(times.diff*surv.avg)
> pi.exact
[1] 0.4298326

Thus, the probability of death is 0.430. Finally, the required number of patients is
given by 65:346=0:430D 152:0. Thus, we would need to enroll 152 patients, 76 in
each arm, to meet the design specifications.

If the full survival curve is unavailable, we may still estimate the sample size by
specifying the null and alternative survival distributions in terms of median survival.
We can then directly convert these into exponential parameters using # D log 2=tm,
where tm is the median survival time. This approximation will be reasonable if the
hazard at the median survival time is near the median of an exponential distribution.
In the current example, we have #0 D log.2/=10:3 D 0:0673. Thus, the hazard for



170 11 Sample Size Determination for Survival Studies

the alternative hypothesis will be #1 D 0:0673=2 D 0:0336. As discussed earlier,
the required number of events under the exponential assumption is 66, the same as
we need using a log-rank test. The probability of death, however, is obtained using
Eq. 11.2.3 and the harmonic mean of the probabilities in the control and treatment
arms using Eq. 11.3.1. In R, using the function “prob.death” defined in Sect. 11.2,

> pi0 <- prob.death(lambda=0.0673, accrual=12, followup=6)
> pi1 <- prob.death(lambda=0.0336, accrual=12, followup=6)
> pi.harmonicMean <- 1/(0.5/pi0 + 0.5/pi1)
> pi.harmonicMean
[1] 0.408085

Thus, the probability of death is 0.408, as compared to 0.430 for the nonparametric
estimate. The required number of patients under the exponential assumption is
65:346=0:408 D 160:2, so we would need 162 patients all together. This is
the result according to the method in Bernstein and Lagakos [6], as presented
in Sect. 11.3. This estimate is somewhat higher than the value 152 we obtained
using the nonparametric approach. To better understand the difference, suppose that,
instead of the harmonic mean 0.408, we use the sample mean:

> pi.avg <- (pi0 + pi1)/2
> pi.avg
[1] 0.4345708

Then the number of subjects we would need according to this estimate of the
probability of death would be 65:346=0:434 D 150:6, or 152 in total. This is
essentially the same as that obtained using the “nonparametric” approach, and
smaller than using the harmonic mean approach. The upshot is that the estimate
of the total number of patients is highly sensitive to the method of computing the
probability of death.

11.7 Example: Calculating the Required Number of Patients
for a Randomized Study of Patients with Metastatic
Colorectal Cancer

Morse et al. [50] reported a Kaplan-Meier plot of overall survival probabilities
of 161 patients with metastatic colon cancer who had undergone metastasectomy
(surgical removal of cancerous growths that have spread from the colon) in Figure
5B of the paper. The survival probabilities at 24, 36, and 48 months (2, 3, and 4
years) are, respectively, 0.76, 0.59, and 0.49. Suppose that we plan a randomized
phase III study comparing a new therapy to placebo for these patients. We plan
to carry out a 0.025 level log-rank test, and wish to have 85% power to detect an
increase in the three-year survival probability from 0.59 (the current untreated rate)
to 0.75. How many patients do we need?

First, we find the hazard ratio by solving 0:59 D 0:80.. Taking logs, we have
. D log.0:59/= log.0:75/ D 1:834. Then the number of deaths required is
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> TwoArmDeaths(Delta=1.834, p=0.5, alpha=0.025, pwr=0.85)
[1] 97.63333

or about 98. A simple function to compute the probability of death using Simpson’s
rule is as follows:

pDeathSimpson <- function(aa, ff, S) {
#Use Simpson’s rule to approximate the probability of death
# assuming uniform accrual
probDeath <- 1 - (1/6)*(S[1] + 4*S[2] + S[3])
probDeath }

where “aa” is the accrual period, “ff” is the follow-up period, and “S” is a vector
with three elements corresponding to the survival probabilities at times “ff”, “ff +
0.5*aa”, and “ff + aa”. We define the parameters as follows:

aa=2
ff=2
So <- c(0.76, 0.59, 0.49)
psi = 1.834
Sa <- So^(1/psi)
Sboth <- 0.5*(So + Sa)

The probabilities of death in the control arm, treatment arm, and the average, are as
follows:

> pDeathControl <- pDeathSimpson(aa=2, ff=2, S=So)
> pDeathControl
[1] 0.4003333
> pDeathTreatment <- pDeathSimpson(aa=2, ff=2, S=Sa)
> pDeathTreatment
[1] 0.2449027
> pDeathAll <- 0.5*(pDeathControl + pDeathTreatment)
> pDeathAll
[1] 0.322618

Thus, the total number of patients necessary to produce and expected value of 97.63
deaths is 97:63=0:322618D 302:6, or 304=2 D 152 patients per arm.

11.8 Using Simulations to Estimate Power

The previous sections described methods for computing sample size and power
for specific situations for which explicit formulas are available. An alternative
approach to estimating power is to simulate a large number of survival data sets
from a particular distribution and accrual pattern, and empirically compute the
power. Specifically, suppose that we are computing power for a two arm randomized
clinical trial comparing a standard therapy to an experimental therapy. Based on
past studies of the standard therapy, we may select a parametric distribution that
approximates the survival of patients given the standard therapy. We also specify
a hazard ratio that we would like to detect. Then, we model the entry of patients
over a specified accrual period, randomization to either of the two arms, and follow
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them until death or, for those still alive at the end of a pre-specified follow-up period,
until they are censored. We then compute a test statistic and p-value using, typically,
a log-rank test. We repeat this process a large number of times, and observe the
proportion of times we reject the null hypothesis of no treatment difference. This is
the estimated power.

Example 11.1. Let us design a clinical trial to determine if an experimental agent
can increase the time to death from prostate cancer among patients diagnosed with
advanced localized prostate caner. The first step is to specify the eligibility criteria,
and to use the data in “prostateSurvival” to determine the survival distribution
(defined as time to death from prostate cancer) to select a Weibull distribution
that matches the data. Specifically, we shall consider men aged 66 to 74 with
newly diagnosed, poorly differentiated, stage T2 prostate cancer, and find a Weibull
distribution that matches the survival proportions of these patients at four and eight
years. In R, we first define the population of interest, “prost.66to74.poor”, and then
define a censoring variable “status.prost” that indicates death from prostate cancer.
(Patients who die of other causes are here considered censored, as are patients still
alive at the last time of follow-up.) We obtain a Kaplan-Meier survival distribution
for these data, and find the survival probabilities at 48 and 96 months (that is, at four
and eight years), as follows:
> attach(prostateSurvival)
> prost.66to74.poor <- prostateSurvival[{{grade == "poor"} &
+ {{ageGroup == "70-74"} | {ageGroup == "66-69"}} &

{stage == "T2"}},]
> library(survival)
> status.prost <- as.numeric(prost.66to74.poor$status == 1)
> result.prost.survfit <- survfit(Surv(survTime, status.

prost) ~ 1,
+ data=prost.66to74.poor)
> summary(result.prost.survfit, time=c(48, 96))
time n.risk n.event survival std.err lower 95% CI upper 95% CI

48 154 16 0.931 0.0171 0.898 0.965
96 26 17 0.717 0.0565 0.615 0.837

Next, we find a Weibull distribution that matches the survival probabilities at
these two times. While we could use the methods described in Sect. 10.3.4, it will
be more convenient to use some facilities in the R package “Hmisc” developed by
Frank Harrell. This package must be downloaded and installed separately. Then we
define the Weibull function using the “Weibull2” function as follows:
library(Hmisc)
Weib.p <- Weibull2(c(4,8),c(0.931,0.717))

This creates a function named “Weib.p” that computes, for any time, the survival
probability based on the Weibull distribution that we have specified. We may take a
peek at it as follows:
> Weib.p
function (times = NULL, alpha = 0.0033021237632906,
+ gamma = 2.21819823268731) {

exp(-alpha * (times^gamma))
}
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The parameters that “Weibull2” has computed are clearly indicated. (The
parametrization used in the Hmisc package is somewhat different than what we
have used in this text, but that doesn’t matter, since the associated survival functions
in this package are consistent with this.)

Next, we define a set of two functions using the Hmisc function “Quantile2”,
which allows us to specify the control survival function (“Weib.p”) and the hazard
ratio. The hazard ratio here is assumed to be a constant, 0.75, which would indicate
that the experimental agent would reduce the hazard of prostate cancer mortality
by 25%. (It is defined as a function because Quantile2 allows specification of more
complex hazard ratio relationships. The result, the R object “ff”, specifies the control
and experimental survival distributions. There is a plot “method” for “ff”, which
means that the ordinary “plot” function will plot the survival distributions for both
the control and experiment arms. Here is the R code:
ff <- Quantile2(Weib.p,hratio=function(x) 0.75)
plot(ff, xlim=c(0,8))

Before we can carry out the simulation, we need to specify names for the two
survival distributions and extract them from “ff” (Fig. 11.3).
rcontrol <- function(n) ff(n, what=’control’)
rintervention <- function(n) ff(n, what=’intervention’)

We also need to specify the censoring distribution, and to do this, we have to select
the accrual and follow-up times. Here, let us accrue patients over three years, and
follow them for an additional seven years. For now we shall assume that the accrual
will follow a uniform distribution. This leads to the censoring distribution being
uniform, with a minimum of five years (for a patient entering at the end of the
accrual period) and a maximum of eight years (for a patient entering at the start of
the trial). We specify the censoring distribution “rcens” using the R function “runif”
as follows (using time in years):
rcens <- function(n) runif(n, 5, 8)

We carry out the power simulation using the Hmisc function “spower”. Here
we specify that there will be nc = 1500 patients enrolled in the control arm and

Fig. 11.3 Survival curves
based on a Weibull
distribution for times to death
from prostate cancer, for use
in a power simulation. The
solid curve is for the control
group and the dashed curve is
for the intervention group
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ni = 1500 in the intervention arm. We will simulate nc = 1000 data sets, and carry
out a logrank test at the 0.025 significance level, as follows:
> spower(rcontrol, rintervention, rcens, nc=1500, ni=1500,
+ test=logrank, nsim=1000, alpha=0.025)
[1] 0.827

The result of the function, 0.827, is the power of the test. We can verify the
significance level of the test by specifying “rcontrol” as both the control and
intervention distribution,
> spower(rcontrol, rcontrol, rcens, nc=1500, ni=1500,
+ test=logrank, nsim=1000, alpha=0.025)
[1] 0.028

We see that the empirical Type I error rate is 2.8%, which is consistent with a 2.5%
level test.

Computing power using simulations has the advantage that it can accommodate
deviations from the usual assumptions of uniform accrual, proportional hazards, and
perfect patient compliance. The “spower” function, combined with “Quantile2”, can
model a wide variety of such deviations. For example, suppose that we expect that
10% of the patients on the intervention arm will be non-compliant, in that they to
not take the experimental agent. We may include that noncompliance factor in the
simulation via the “dropout” argument in the “Quantile2” function.
> ff.dropout <- Quantile2(Weib.p,hratio=function(x) 0.75,
+ dropout=function(x) 0.10)
> rcontrol <- function(n) ff.dropout(n, what=’control’)
> rintervention <- function(n) ff.dropout(n, what=’intervention’)
> spower(rcontrol, rintervention, rcens, nc=350, ni=350,
+ test=logrank, nsim=1000, alpha=0.025)
[1] 0.734

We see that the noncompliance has resulted in a loss of power, from 82.7% to
73.4%.

The “spower” suite of functions can accommodate a wide variety of deviations,
including non-uniform accrual, non-proportional hazards, and noncompliance in
either the control or intervention subjects. Details and examples may be found in
the R help file for “spower” in the “Hmisc” package. If one needs to find the sample
size or detectable hazard ratio for a specific power (80% for example), one can use
trial and error. Alternatively, one can define an R function that takes (for example)
the hazard ratio as an argument and returns the power. Using that, combined with
the R function “uniroot”, one can solve to get the detectable hazard ratio.

11.9 Additional Notes

1. Freedman [20] derived an alternative to Eq. 11.4.2 for the number of deaths
required using the log-rank test:

d D .z˛=2 C zˇ/
2..C 1/2

.. " 1/2 (11.9.1)
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This is approximately equal to the number of deaths given in Eq. 11.4.2. To
see this, let  D .. " 1/=..C 1/. Using the first term of a standard logarithm
series expansion, we have log../ $ 2 . Substituting into Eq. 11.9.1 we get
Eq. 11.4.2. See [54] for more details.

2. Methods for testing for non-inferiority, bio-equivalence, adaptive sample size
methods, and the use of alpha spending functions for interim analyses have been
adapted to use survival data. See Shih and Aisner [62] for a review of these
methods.

Exercises

11.1. For the colon cancer example in Sect. 11.7, compute the probability of death
and required number of patients assuming an exponential distribution with a three-
year survival probability of 0.59.

11.2. Using the exponential distribution from Exercise 11.1, find the survival
probabilities at 2, 3, and 4 years, and use them in the Simpson’s rule method
to obtain the probability of death. Compare your answers to those given in
Exercise 11.1.

11.3. Consider the prostate cancer clinical trial of Example 11.1, where there was
a 10% non-compliance rate. We found that we had 73.4% power to detect a hazard
ratio of 0.75. What would the hazard ratio need to be to be detactable with 80%
power?



Chapter 12
Additional Topics

12.1 Using Piecewise Constant Hazards to Model
Survival Data

The exponential distribution, with its constant hazard assumption, is too inflexible
to be useful in most lifetime data applications. The piecewise exponential model,
by contrast, is a generalization of the exponential which can offer considerable
flexibility for modeling. In Chap. 2 (Exercise 2.5) we saw a simple piecewise
exponential model with two “pieces”. That is, the survival time axis was divided
into two intervals, with a constant hazard on each interval. Here we show how to
generalize this model to accommodate multiple intervals on which the hazard is
constant. An important feature of the piecewise exponential is that the likelihood is
equivalent to a Poisson likelihood. Thus, we can use a Poissonmodel-fitting function
in R to find maximum likelihood estimates of the hazard function and of parameters
of a proportional hazards model.

The connection between the piecewise exponential and Poisson models is most
easily seen with a single piece, which is just an ordinary exponential distribution
with rate parameter #. The likelihood, as we have seen in Chap. 2, is as follows,

Le.#/ D
nY

iD1
h.ti/ıi S.ti/ D

nY

iD1
#ıi e##ti D #de##V (12.1.1)

where, as usual, ti denotes the failure time of the ith subject, and ıi is that subject’s
censoring indicator. As in Chap. 2, d D P

ıi denotes the number of deaths and
V D P

ti denotes the total time at risk. If time is in years, V is the number of
person-years at risk, for example. As we saw in Chap. 2, the maximum likelihood
estimate is given by O# D d=V , and we may interpret this estimate as the “crude”
event rate per person-year (or, more generally, per time unit).
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Now let us suppose that the random variable d has a Poisson distribution with
mean ", and that " D V#. In this context, # is a rate parameter. Again, if time is
in years, then # would denote the death rate per year. The likelihood function for a
Poisson distribution is

Lp.#/ D .#V/de##V D #de##V # Vd: (12.1.2)

Clearly the Poisson likelihood Lp is proportional to the exponential likelihood Le,
the constant multiple being Vd. Thus, the maximum likelihood estimate of one is
the same as the maximum likelihood estimate of the other, specifically, O# D d=V .
We are not claiming, though, that the number of deaths, d, follows a Poisson
distribution. Rather, we are pointing out that the likelihoods are proportional, so
that if we treat d as having a Poisson distribution, we can use an R function for
finding the maximum likelihood estimate of a Poisson distribution, and that m.l.e.
will also be the m.l.e. of the exponential distribution.

In this simple example, the exponential is simple enough that no practical benefit
comes from this observation of the equivalence of the two m.l.e.’s. But in the case of
a piecewise exponential distribution, the equivalence is of great value. Suppose that
we divide the time axis into contiguous intervals using cut points 0; c1; c2; : : : ; ck.
For each subject, say i, we denote the time spent in each interval by ti1; ti2;:::;; tik0 ,
where k

0
denotes the time interval in which subject i dies, or the largest time interval

in which subject i is still known to be alive. We also define ıij to be 0 for each
interval j in which the ith subject is known to be alive, and 1 for interval k if the
subject died in that interval. Then for patient i, we have the survival time of that
patient given by ti D

Pk
jD1 tij and the censoring indicator by ıi D

Pk
jD1 ıij.

We assume a proportional hazards model

#i.ti; ˇ/ D #0.ti/eziˇ;

where now the baseline hazard is a piecewise exponential, #0.u/ D #j, j being the
jth interval, the one in which u falls. The full likelihood is then given by

Lpe.#1;#2; : : : ;#k; ˇ/ D
nY

iD1

k
0
.i/Y

jD1
#
ıij
ij e

##ijtij (12.1.3)

where #ij D #jeziˇ , which is the proportional hazards assumption for the piecewise
exponential. As with the single exponential, we may treat the censoring indicators
ıij as having a Poisson distribution with mean #ijtij, and the Poisson likelihood
will be proportional to the piecewise exponential likelihood, so that the maximum
likelihood estimates obtained from the Poisson model with

log.#ij/ D log.#j/C ziˇ D ˛j C ziˇ

will also be the m.l.e.’s for the piecewise exponential proportional hazards model.
See [40] and [31] for details.
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To fit the Poisson model with response variable ıij, mean #ijtij and covariates zi,
we write

log
'
#ijtij

(
D log.#j/C ziˇ C log.tij/ D ˛j C ziˇ C log.tij/: (12.1.4)

The ˛j are the logs of the baseline hazard coefficients and ˇ is the log of the hazard
ratio for zi. The constant log.tij/ is called an offset in the language of generalized
linear models. We may fit such a model using the “glm” function with a “Poisson”
family.

If the coefficients zj are categorical, we may collapse over all the covariates as
well as over the time intervals to obtain a more compact representation of the data
set. To see this, let us first consider the case with no covariates, and sum over the
patients i D 1; : : : ; n rather than over the time periods. The we have dj D

Pn
iD1 ıij,

which denotes the total number of deaths that occurred in interval .cj#1;cj! , which is
open on the left and closed on the right. Also, we have Vj D

Pn
iD1 tij, which denotes

the total amount of time (person-years, for example) that subjects spent in interval j.
Then by an argument similar to that shown above, we can show that, if we treat
the djas Poisson-distributed variables with mean #jVj, and use the likelihood based
on this Poisson assumption to get maximum likelihood estimates O#1; O#2; : : : ; O#k,
which are also maximum likelihood estimates of the hazard parameters of the
piecewise exponential distribution. If we have a binary covariate, we compute the
corresponding sums for each of the two levels of the covariate, and also for the k
time intervals, resulting in a 2 by k table of event counts and person years. Once the
data has been put into this summary form, we may use Eq. 12.1.4 to obtain estimates
of the log baseline hazard parameters ˛jand of the effect parameter ˇ.

To clarify this discussion, let us consider a simple synthetic example given earlier
in Table 4.1. This data set consists of six survival times, three receiving a control
and three receiving an experimental treatment. For the sake of discussion, we shall
say that these times represent numbers of weeks. In the following output, we define
those six survival times, censoring indicators, and treatment indicators, and put them
together in a data frame called “simple”:

> tt <- c(6, 7, 10, 15, 19, 25)
> delta <- c(1, 0, 1, 1, 0, 1)
> trt <- c(0, 0, 1, 0, 1, 1)
> id <- 1:6
> simple <- data.frame(id, tt, delta, trt)
> simple

id tt delta trt
1 1 6 1 0
2 2 7 0 0
3 3 10 1 1
4 4 15 1 0
5 5 19 0 1
6 6 25 1 1
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Fig. 12.1 Survival times of a
synthetic data set. The
intervals defined by the cut
points tau are shown using
vertical dotted lines
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Next we define three intervals that we will use to define a piecewise exponential
distribution:

tau.s <- c(0, 8, 16, 30)

We plot these data in Fig. 12.1.
To prepare the data to fit a piecewise exponential, we first partition the data into

events and person-weeks per interval. The first patient, who died at 6 weeks, is
recorded an event in the first interval, with 6 person-weeks of “experience” in that
interval. The second patient was censored at 7 weeks. That patient is recorded as a
non-event in the first interval, with 7 person-weeks of experience. The third patient’s
survival experience is divided into two portions. The first portion is a non-event in
the first interval, with 8 person-weeks of exposure (8 weeks being the length of the
first interval). The second portion is an event in the second interval, with 10"8 D 2
person-weeks of experience in that interval. We continue in the same way with the
remaining patients. Patient 4 generates two records in the final expanded data set,
while Patients 5 and 6 each generate three records. In R, we may automate this
procedure using the “survSplit” function (which is part of the survival package).

simple.split.s <- survSplit(data=simple, cut=tau.s, end="tt",
start="t0", event="delta", episode="diagGrp")

In this function, “t0” is the name given to the start of the interval for the respective
part of a patient’s record, and “diagGrp” is the indicator for the interval that a
particular record refers to. Next, we define the number of person-weeks per record:

simple.split.s$expo <- simple.split.s$tt - simple.split.s$t0
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Finally, for convenience, we order the observations in “simple.split.s” to group
the different parts of each patients records together in a data frame called “sim-
ple.split.ord”, and examine its contents:

> ord <- order(simple.split.s$id)
> simple.split.ord <- simple.split.s[ord,]
> simple.split.ord

id tt delta trt t0 diagGrp expo
7 1 6 1 0 0 1 6
8 2 7 0 0 0 1 7
9 3 8 0 1 0 1 8
15 3 10 1 1 8 2 2
10 4 8 0 0 0 1 8
16 4 15 1 0 8 2 7
11 5 8 0 1 0 1 8
17 5 16 0 1 8 2 8
23 5 19 0 1 16 3 3
12 6 8 0 1 0 1 8
18 6 16 0 1 8 2 8
24 6 25 1 1 16 3 9

This output confirms our previous computations for Patients 1, 2, and 3, and gives
the results for the remaining patients. For example, Patient 3 (id D 3) consists of
two records, one for interval (“diagGrp”) 1, and one for interval 2. The column
“expo” gives the number of person-weeks per record, which for this patient is 8 in
the first interval and 2 in the second. Patient 6 (idD 6), to take another example, has
three records, one for each of the three time intervals in which this patient spends
time. There are zero events in time periods (“diagGrp”) 1 and 2, and one event in
time period 3. That patient spends the full interval of time in each of the first two
intervals (8 weeks each, respectively), and the remaining time, 25" 16 D 9 weeks,
in the third interval.

To obtain parameter estimates for the piecewise exponential distribution, we treat
“delta” in “simple.split.ord” as if it had a Poisson distribution, the log of “expo” as
the offset, and the mean as given in Eq. 12.1.4. The R code is as follows:

> result.simple.poisson <- glm(delta ~ -1 + factor(diagGrp)+trt +
+ offset(log(expo)), family=poisson, data=simple.split.ord)
> summary(result.simple.poisson)

Coefficients: Estimate Std. Error z value Pr
(>|z|)

factor(diagGrp)1 -3.2942 1.0370 -3.177 0.00149 **
factor(diagGrp)2 -1.7463 0.8569 -2.038 0.04156 *
factor(diagGrp)3 -1.0912 1.5949 -0.684 0.49389
trt -1.3937 1.2425 -1.122 0.26199
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

In the function call, “glm” is a “generalized linear model” with a Poisson family.
The “"1” in the model definition tells R to fit a separate term for each of the three
interval factors (rather than to consider the first level as a reference level). There
are four output parameter estimates. The first three are estimates of ˛1, ˛2, and ˛3,
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the log-transformed baseline hazard parameters, of Eq. 12.1.4. The fourth parameter
estimate is an estimate of ˇ, the treatment effect estimator. In this synthetic example,
the negative estimate for “trt” would indicate that the experimental treatment is
effective, but that it is not statistically significant. Remember, even though these are
results from fitting a Poisson model to the extended data set in “simple.split.ord”,
the effect is actually of fitting a piecewise exponential distribution to the original
data, “simple”.

Since the covariate (treatment) is binary, we may further simplify the data set by
collapsing over the three time intervals and two treatment groups. The R function
“aggregate” facilities this, as follows:

> simple.tab <- aggregate(simple.split.ord[c("delta", "expo")],
+ by=list(treat=simple.split.ord$trt,
+ diagGrp=simple.split.ord$diagGrp), sum)

> simple.tab
treat diagGrp delta expo

1 0 1 1 21
2 1 1 0 24
3 0 2 1 7
4 1 2 1 18
5 1 3 1 12

The first argument, “simple.split.ord[c(“delta”, “expo”)]”, selects the columns
“delta” and “expo”, representing the event indicator and person-weeks, respectively.
The “by” argument indicates that the collapsing will be done over the two levels of
“trt” and the three levels of “diagGrp”. Finally, the “sum” argument indicates that
we will add up all the components of “delta” and “expo” across the levels of “trt”
and “diagGrp”. The result is a 3-by-2 table, each cell of which gives the number of
events (delta) out of the person-weeks (expo):

trt
diagGrp 0 1

1 1 / 21 0 / 24
2 1 / 7 1 / 18
3 1 / 12 - / -

While there are six cells, the lower right one is blank, since there are neither
events nor person-years for the experimental treatment in the third time interval. As
a result, the “simple.tab” data set has only five rows.We may fit the log-linear model
to this compact data set as follows, and we get exactly the same parameter estimates
and standard errors using the compact data set “simple.tab” as we did using the
extended data set “simple.split.ord”.

result.simple.tab.poisson <- glm(delta ~ -1 + factor(diagGrp) +
treat + offset(log(expo)), family=poisson, data=simple.tab)

We may compare these results to those from fitting a Cox proportional hazards
model, which we did in Sect. 5.3.3:
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> coxph(Surv(tt, status) ~ grp)

coef exp(coef) se(coef) z p
grp -1.33 0.266 1.25 -1.06 0.29

We see that the parameter estimate of the treatment effect, and its standard error,
are similar to those resulting from the piecewise exponential model. Unlike the
piecewise exponential model, the Cox model does not directly produce an estimate
of the baseline hazard since, as discussed in Chap. 5, the baseline hazard cancels out
of the partial likelihood.

The log-hazard estimates for the control group are the first three elements of the
coefficient vector,

alpha0.hat <- as.numeric(result.simple.tab.poisson$coef[1:3])

The corresponding estimates for the treatment group are obtained by adding
the constant estimate of the treatment effect, since the proportional hazards model
implies that the log hazards for the two groups differ by a constant,

beta.hat <- result.simple.tab.poisson$coef[4]
alpha1.hat <- alpha0.hat + beta.hat

A plot of the piecewise exponential log hazard function estimates is given in
Fig. 12.2.

To obtain the corresponding survival curve estimates, we use the “ppexp”
function from the “msm” package, which must be separately downloaded and
installed. The R code is as follows:

library(msm)
tt.vec <- (0:300)/10
piece.surv.0 <- ppexp(q=tt.vec, rate=exp(alpha0.hat),

t=tau.s[1:3], lower.tail=F)
piece.surv.1 <- ppexp(q=tt.vec, rate=exp(alpha1.hat),

t=tau.s[1:3], lower.tail=F)
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Fig. 12.2 Log hazard piecewise exponential plot for the synthetic data. The control log hazard is
a solid line, and the treatment log hazard is a dashed line
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Fig. 12.3 Survival curve estimates for the piecewise exponential for the synthetic data. The control
survival is a solid line, and the treatment survival is a dashed line

The “rate” argument is a vector of hazard rates, and the “t” argument is a vector
of cut points. The “lower.tail=F” option causes the function to return a survival
function (rather than a cumulative distribution function). The survival curves are in
Fig. 12.3. Note that the survival curve estimates are continuous functions, but are
not smooth at the two break points.

The piecewise exponential distribution is especially helpful when analyzing large
data sets. Consider, for example, the “prostateSurvival” data, and let’s select those
patients with poorly differentiated prostate cancer (grade = “poor”) who are 80 years
old or above. What is the overall survival difference between men with stage T2
disease as compared to men with stage T1 disease? Since we are asking about
overall survival (rather than prostate-specific survival), the outcome variables are
“survTime” and “status”. In the following code, we select the relevant subset. Also,
since “status” is 1 for death from prostate cancer and 2 for death from other causes,
we must define a new censoring variable “status.all” which is 1 if a patient died of
any cause and 0 if alive at the last time of follow-up. There are 1640 patients in this
subset.

> prost.80plus.poor <- prostateSurvival[{{grade == "poor"} &
+ {ageGroup == "80+"}},]
> prost.80plus.poor$status.all <-
+ as.numeric(prost.80plus.poor$status >= 1)
> prost.80plus.poor$T2 <-
+ as.numeric(prost.80plus.poor$stage == "T2")
> prost.80plus.poor$id <- 1:nrow(prost.80plus.poor)
> head(prost.80plus.poor)

grade stage ageGroup survTime status status.all T2 id
7 poor T1c 80+ 18 0 0 0 1
12 poor T1c 80+ 23 0 0 0 2
13 poor T2 80+ 21 0 0 1 3
14 poor T1ab 80+ 13 0 0 0 4
16 poor T1ab 80+ 30 0 0 0 5
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36 poor T1c 80+ 6 0 0 0 6

> dim(prost.80plus.poor)
[1] 1640 8

Next, we define intervals on which the hazard is assumed to be constant (which,
of course, is an approximation). Here we shall use 2-year (24 month) intervals.

> tau.s <- (0:5)*24
> tau.s
[1] 0 24 48 72 96 120

Now we use the “survSplit” procedure as before to compute events and person-
months for each interval.

prost.split.s <- survSplit(data=prost.80plus.poor, cut=tau.s,
end="survTime", start="t0", event="status.all", episode=

"survGrp")
prost.split.s$expo <- prost.split.s$survTime - prost.split.s$t0

At this point we could fit a piecewise exponential distribution (via the Poisson
likelihood of Eq. 12.1.4) using “prost.split.s”. Instead, we order the records in
“prost.split.s” so that subject id’s are together, and then aggregate the data into a
more compact form:

> prost.split.s <- survSplit(data=prost.80plus.poor,
+ cut=tau.s, end="survTime", start="t0",
+ event="status.all", episode="survGrp")
> prost.split.s$expo <- prost.split.s$survTime - prost.split.s$t0
> ord <- order(prost.split.s$id)
> prost.split.ord <- prost.split.s[ord,]
> prost.tab <- aggregate(prost.split.ord[c("status.all","expo")],
+ by=list(T2=prost.split.ord$T2,
+ survGrp=prost.split.ord$survGrp), sum)
> prost.tab

T2 survGrp status.all expo
1 0 1 145 14014
2 1 1 130 15388
3 0 2 86 7279
4 1 2 130 7429
5 0 3 66 3868
6 1 3 80 3149
7 0 4 22 1780
8 1 4 25 893
9 0 5 9 365
10 1 5 5 175

We see that the original data set of 1640 patients has been summarized in a compact
data set “prost.tab” with only 10 rows. This compact data set allows us, if we like,
to compute the crude event rates in each category. For example, from the first row,
we see that the death rate for patients with Stage T1 disease (indicated by T2D 0)
and the first time interval (0 to 24 months) is 145=14014 D 0:0103 events per
person-month. We may also use the Poisson model to fit a piecewise exponential
distribution,
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> result.prost.tab.poisson <- glm(status.all ~ -1 +
+ factor(survGrp) + T2 + offset(log(expo)),
+ family=poisson, data=prost.tab)
> summary(result.prost.tab.poisson)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

factor(survGrp)1 -4.77101 0.07428 -64.231 <2e-16 ***
factor(survGrp)2 -4.31653 0.07996 -53.985 <2e-16 ***
factor(survGrp)3 -3.95792 0.09094 -43.522 <2e-16 ***
factor(survGrp)4 -4.10510 0.14865 -27.615 <2e-16 ***
factor(survGrp)5 -3.71493 0.26871 -13.825 <2e-16 ***
T2 0.18128 0.07632 2.375 0.0175 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The first five parameter estimates are the baseline (Stage T1), and the sixth is
the log hazard ratio of the effect on overall survival of a patient having Stage T2
(as compared to Stage T1) disease. We see that someone with Stage T2 disease has
hazard exp.0:18128/D 1:20 times that of someone with Stage T1 disease. We may
plot the fitted piecewise exponential survival distributions as we did previously:

> alpha0.hat <- as.numeric(result.prost.tab.poisson$coef[1:5])
> beta.hat <- result.prost.tab.poisson$coef[6]
> alpha1.hat <- alpha0.hat + beta.hat
> library(msm)
> tt.vec <- 0:120
> piece.surv.0 <- ppexp(q=tt.vec, rate=exp(alpha0.hat),
+ t=tau.s[1:5], lower.tail=F)
> piece.surv.1 <- ppexp(q=tt.vec, rate=exp(alpha1.hat),
+ t=tau.s[1:5], lower.tail=F)
> plot(piece.surv.0 ~ tt.vec, type="n", xlab="Time in months",
+ ylab="Survival probability")
> lines(piece.surv.0 ~ tt.vec, lwd=2)
> lines(piece.surv.1 ~ tt.vec, lwd=2, lty=2)

The plot is shown in Fig. 12.4. We see that, although the survival difference
is statistically significant, this difference is not very large in practical terms. The
probability that a patient in this group (80+ years old and poorly differentiated
cancer at diagnosis) lives for 10 years (120 months) is only about 20%, with only a
slight survival advantage for those patients with T1 disease.

For comparison, let us look at the results of fitting a Cox proportional hazards
model to the original data subset.

> summary(coxph(Surv(survTime, status.all) ~ T2,
+ data=prost.80plus.poor))

n= 1640, number of events= 698

coef exp(coef) se(coef) z Pr(>|z|)
T2 0.1831 1.2009 0.0764 2.397 0.0165 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Fig. 12.4 Overall survival of men diagnosed at ages 80 and above with poorly differentiated
prostate cancer. The fitted model is based on a piecewise exponential distribution for the baseline
(T1), assuming proportional hazards

The parameter estimate for T2 (0.1831) is very close to the estimate given above
using the piecewise exponential (0.1813). The standard errors are also similar.

The piecewise exponential model, which uses a small number of parameters to
model the baseline hazard function, may be viewed as intermediate in flexibility
between a parametric model and nonparametric methods such as the Kaplan-Meier
survival curve estimator and the Cox partial-likelihood proportional hazards model.
Choosing the number of “pieces” and the locations of the cut points is an important
issue. In many practical applications, a small number of pre-specified intervals
will work well. For a more formal way of selecting the number and location of
the intervals, see Demarqui et al. [15]. The piecewise exponential model is also
appropriate with heavily tied survival data, when the ties are a result of rounding.
It is thus an alternative to the methods for handling tied survival times discussed in
Sect. 5.6.

12.2 Interval Censoring

Until now the only type of censoring we have considered is right censoring. Right
censoring occurs naturally in clinical trials, as we have discussed in Chap. 1 and
elsewhere, and we can directly incorporate it into a survival distribution likelihood
function.as But sometimes data are left- or interval-censored, and thus require
specialized methods. The general likelihood function for right-censored data was
presented in Eq. 2.6.1, which we now express in the following equivalent form:

L.ˇ/ D
Y

i2D
f .ti/ ˘

Y

i2C
S.ti/ (12.2.1)
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where D represents the set of all subjects who fail and R the set of all who are right-
censored. Now suppose that some of the observations are interval-censored, so that,
say, patient k has an event that lies between times Lk and Rk

L.ˇ/ D
Y

i2D
f .ti/ ˘

Y

i2C
ŒS.Li/" S.Ri/! : (12.2.2)

This more general formulation includes right censoring as a special case when
Ri D 1. In addition, if the event for subject i is known only to have occurred
between the times Li and Ri, that event is said to be interval-censored, and is
directly incorporated into Eq. 12.2.1. Furthermore, if an event is only known to
have occurred before a particular time Ri, this is known as left censoring, and
may be accommodated by setting Li D 0. Accommodating interval censoring with
parametric survival distributions is usually straightforward, since maximization of
Eq. 12.2.2 may be achieved using readily available optimization software. Non-
parametric maximization of Eq. 12.2.2 is far more difficult with interval censoring
since, unlike with right-censoring, there is no closed form solution which maximizes
the likelihood, and there may be intervals on the time-scale where the form of
the survival curve is ambiguous. A special optimization technique known as the
Expectation-Maximization algorithm does allow one to find a solution, albeit at
often great cost in computation time [73]. Following are two examples.

Example 12.1. Descent Times of Baboons
In this example, discussed by Ware and DeMets [75], researchers in the Amboseli
Reserve in Kenya observed the descent times, in hours, of 152 baboons from
their sleeping sites. Sometimes the observers arrived after the baboon had already
completed its descent, in which case only an upper limit of the descent time is
known; that is, the time was left-censored. The data are available in the data set
“Baboons” in the R package “ssym”. Here are a few cases:

> library(ssym)
> data(Baboons)
> Baboons[c(1,39,71,101, 150),]

t cs
1 6.933333 0
39 8.983333 0
71 8.000000 1
101 8.983333 1
150 17.833333 1

Here, the variable “cs” is 0 for a time where the event is observed and 1 if it is left-
censored. For example, animal 1 was observed to complete the descent in 6.93 h,
whereas for animal 150, all we know is that it had completed its descent in fewer
than 17.83h. To work with the data in R, we shall need to add some extra variables.
Specifically, we shall define a variable “delta” that has the more conventional coding
of 0 for a censored observation and 1 for an uncensored one. Next, we define left and
right intervals for every case. For uncensored observations, we define both “tt.L” and



12.2 Interval Censoring 189

“tt.R” to equal “t”; for left-censored observations, we define “tt.L = 0.1” (a small
value greater than 0)1 and “tt.R = t”. We define these variables within the “Baboons”
data frame using the “within” function:

Baboons <- within(Baboons, {
delta <- rep(0, length(cs))
delta[cs == 0] <- 1
tt.L <- t
tt.R <- t
tt.L[cs == 1] <- 0.1 })

The “Baboons” data set now looks like this:

> Baboons[c(1,39,71,101, 150),]
t cs tt.R tt.L delta

1 6.933333 0 6.933333 6.933333 1
39 8.983333 0 8.983333 8.983333 1
71 8.000000 1 8.000000 0.100000 0
101 8.983333 1 8.983333 0.100000 0
150 17.833333 1 17.833333 0.100000 0

Wemay obtain a nonparametric estimate of the survival function using the packages
“Icens” and “interval”. The Icens package implements a procedure known as the
“expectation-maximization” (EM) algorithm to obtain the survival curve estimate
[17, 73]. The code is as follows2:

library(Icens)
library(interval)
result.icfit <- icfit(Surv(time=tt.L, time2=tt.R,

type="interval2") ~ 1, conf.int=T, data=Baboons)

We may plot the estimated survival curve and 95% confidence intervals as
follows:

plot(result.icfit, XLAB="Time in hours",
YLAB="Survival probability", estpar=list(col="blue", lwd=2),
cipar=list(col="blue", lty=2))

For comparison, we may fit aWeibull model to the interval-censored data as follows:

baboon.survreg <- survreg(Surv(time=tt.L, time2=tt.R,
type="interval2") ~ 1, dist="weibull", data=Baboons)

Unfortunately, we cannot directly use the results of this model in a “predict”
statement, which is necessary for plotting the predicted values. To do this, we define
a variable “ones” which is just a column of ones, and fit that as a covariate. Then we
can obtain predicted values, as follow:

1The “icfit” function in the “interval” package does not require times to have values greater than
zero, but the “survreg” function does.
2The “Icens” package is on bioconductor,http:www.bioconductor.org. In the R graphical interface
window, be sure to select the drop down menu items “Packages”, then “Repositories”, and then
include “BioC software” in addition to the default repository “CRAN”.

http://%20http:www.bioconductor.org
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ones <- rep(1,nrow(Baboons))
baboon.survreg <- survreg(

Surv(time=tt.L, time2=tt.R, type="interval2") ~ ones,
dist="weibull", data=Baboons)

pct <- 1:999/1000
ptime <- predict(baboon.survreg, type=’quantile’,

newdata=data.frame(ones=1), p=pct, se=TRUE)

Finally, we may add the predicted Weibull survival curve (and 95% confidence
intervals) using the “matplot” function (which simultaneously plots the survival
curve and upper and lower confidence intervals):

matlines(cbind(ptime$fit, ptime$fit + 2*ptime$se.fit,
ptime$fit- 2*ptime$se.fit), 1-pct,
xlab="Hours", ylab="Survival", type=’l’, lty=c(1,2,2),
lwd=c(2,1,1), xlim=c(0,20), col="red")

The resulting plots are in Fig. 12.5.

Since all of the censored observations are left-censored, an alternative way to
obtain the same survival curve estimate is to reverse time by negating all of the
survival times. This process converts left-censoring to right-censoring, allowing
us to compute a standard Kaplan-Meier survival curve in reverse time. This is
the approach taken by Ware and DeMets [75]. To re-create the survival curve,
we need to reverse the time on the x-axis (“xlim = c(0, "18) and plot a cumulative
incidence function (ranging from 0 to 1) instead of the usual survival function
(“fun = ‘event’ ”):
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Fig. 12.5 Non-parametric (blue) and Weibull (red) survival distribution estimates of left-censored
descent times of baboons. The dashed lines indicate 95% pointwise confidence bands
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result.surv.reverse <- survfit(Surv(-t, delta) ~ 1, conf.int=T,
data=Baboons, conf.type="log-log")

plot(result.surv.reverse, xlim=c(0, -18), fun="event")

Example 12.2. Breast Cosmesis Study
Finkelstein [18] presented a method for fitting a proportional hazards model to
interval-censored data, and illustrated it using data from a breast cosmesis study.
In this study, 94 breast cancer patients treated with radiation therapy with or
without adjuvant chemotherapy were followed to determine the time until cosmetic
deterioration (specifically, the appearance breast retraction) of the treated breast.
Since patients were evaluated at office visits separated by a number of months,
the data were interval-censored. The data set, “bcos”, is available in the “interval”
package, and here are the first few observations:

> library(interval)
> data(bcos)
> bcos[c(1,33, 47, 62, 90),]

left right treatment
1 45 Inf Rad
33 0 5 Rad
47 8 12 RadChem
62 14 17 RadChem
90 16 60 RadChem

For example, patient 1 was treated with radiation alone, and had no event as of 45
months; the left end of the interval is thus 45, and the right end is infinite (“Inf”),
meaning that the event (if it occurred at all) would have to have happened sometime
after 45 months. Patient 47, who received radiation and adjuvant chemotherapy, had
not had the event at an office visit at 8 months, but the breast retraction had been
observed at the next visit four months later. Thus, the event took place sometime
between 8 and 12 months. We may obtain maximum likelihood estimates of the
survival distributions (assuming a proportional hazards model) and plot them as
follows:

icout <- icfit(Surv(left,right,type="interval2")~treatment,
data=bcos, conf.int=F)

plot(icout, XLAB="Time in months", YLAB="Survival probability",
COL=c("lightblue", "pink"), LEGEND=F,
estpar=list(col=c("blue", "red"), lwd=2, lty=1))

legend("bottomleft",
legend=c("Radiation alone", "Radiation and chemo"),
col=c("blue","red"), lwd=2)

We may also fit a Weibull proportional hazards model (also an accelerated failure
time model) to the interval-censored data. First we must define modified left and
right endpoints of the intervals, since the “survreg” R function will not accept
survival times that are zero, and certainly not infinite survival time. In the latter
case, we must set a maximum possible time, which depends on the experimental
design. Here we choose the maximum to be 65 months:
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> bcos <- within(bcos, {
+ left.alt <- left
+ left.alt[left == 0] <- 0.1
+ right.alt <- right
+ right.alt[is.infinite(right)] <- 65})
> bcos[c(1,33, 47, 62, 90),]

left right treatment right.alt left.alt
1 45 Inf Rad 65 45.0
33 0 5 Rad 5 0.1
47 8 12 RadChem 12 8.0
62 14 17 RadChem 17 14.0
90 16 60 RadChem 60 16.0

We may fit the Weibull model and add the fitted survival curves as follows:

bcos.survreg <-
survreg(Surv(left.alt, right.alt, type="interval2") ~ treatment,
dist="weibull", data=bcos)

pct <- 1:999/1000
ptime <- predict(bcos.survreg, type=’quantile’,

newdata=data.frame(treatment=c("Rad", "RadChem")),
p=pct, se=F)

lines(ptime[1,], 1-pct, xlab="Hours", ylab="Survival", type=’l’,
lty=c(1,2,2), lwd=c(2,1,1), xlim=c(0,20), col="blue")

lines(ptime[2,], 1-pct, xlab="Hours", ylab="Survival", type=’l’,
lty=c(1,2,2), lwd=c(2,1,1), xlim=c(0,20), col="red")

The results from both the proportional hazards (semi-parametric) model and the
Weibull model are plotted in Fig. 12.6. The shaded rectangles in the figure represent
gaps in the interval-censored data, where there is no information on the shape of
the survival curve. The solid slanted lines, which connect the right ends of each
such interval with the left ends of the next, represent only one possible shape for the
curve; any monotone non-increasing connector line would also be a valid estimate.
This ambiguity is a feature of interval-censored data.

12.3 The Lasso Method for Selecting Predictive Biomarkers

The primary purpose of the survival models we have discussed in this text has
been to understand how covariates contribute to survival times. For example, in
the “pharmacoSmoking” clinical trial, we wanted to know if the triple therapy was
effective in increasing the time to relapse; in the “prostateSurvival” data set, we
wanted to understand the extent to which age, stage, and grade affected prostate-
specific and overall survival. In some applications, by contrast, our interest focuses
on the predictive ability of a set of covariates. In studies with large numbers
of genetic or other biomarker measurements, the focus may be on using those
measurements to predict a patient’s survival prospects, perhaps to aid in treatment
decision making. In such studies, dozens (or even thousands) of predictors may be
available. Many—or in some cases most—of these predictors may have nothing to
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Fig. 12.6 Survival times (times to appearance of breast retractions) for breast cancer patients
treated with radiation alone (blue) or radiation with adjuvant chemotherapy (red). The smooth lines
are from a proportional hazards (also accelerated failure time) Weibull fit to the interval-censored
data, whereas the step functions are non-parametric proportional hazards estimates. The shaded
areas represent intervals on which the form of the survival curve estimate is ambiguous

with survival, and those that are associated with survival may be strongly correlated
amongst themselves, complicating the prediction process. While one could use one
of the model-search procedures discussed in Chap. 6, a wide range of procedures
are known to be more effective when the primary aim of a study is to make survival
predictions [29, 38]. An important such method is the “lasso” procedure developed
originally by Tibshirani [71, 72]. Goeman [24] proposed a practical computational
procedure which is implemented in the R package “penalized” [23]. This approach
maximizes the partial likelihood function l.ˇ/ D logL.ˇ/ given in Eq. 5.4.1 in
Sect. 5.4, but now with the additional stipulation that the L1 norm of the parameter
estimates satisfies the constraint

Pp
jD1

ˇ̌
ˇj
ˇ̌

! t for a constant t, where p is the
number of parameters. This may be shown to be equivalent to maximizing the
penalized likelihood which, for a pre-specified value of # is given by

lpen.ˇ/ D l.ˇ/ " #
pX

jD1

ˇ̌
ˇj
ˇ̌

(12.3.1)

Adding the constraint on the sum of the absolute values of the coefficient estimates
shrinks them toward zero (as compared to the maximumpartial likelihood parameter
estimates without the constraint). Unlike ridge regression (a predecessor of the
lasso), the lasso shrinks the estimates of the least predictive coefficients all the way
to zero, effectively doing variable selection. A sufficiently large value of #will result
in no covariates at all in the model, and smaller # values result in larger numbers of
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non-zero coefficient estimates. At the lower limit, where # D 0, the penalized partial
likelihood is just the ordinary partial likelihood, and all of the estimates are non-
zero. A complication is that the function lpen.ˇ/ may not be strictly concave, and
it may be only weakly concave or even flat at the maximum, causing convergence
problems; see Goeman [24] for further discussion.

How do we select #? Since the goal of the procedure is accurate prediction,
we want to select the value of # that maximizes the “predictive accuracy” of the
procedure, where “predictive accuracy” is a measure of how well the prediction is
doing. An effective and practical way to do this is through a procedure called cross
validation. In one version of this procedure, we start with an initial value of # and we
randomly divide the data set into five subsets of approximately equal size. We select
one of the subsets to be what we shall call the “validation” set, and combine the
remaining subsets into what we shall call the “training” set. We use the training set,
which comprises 80% of the data, to construct the lasso model based on Eq. 12.3.1.
We use this model to predict the survivals of patients in the validation set, which is
the remaining 20%. We use a partial-likelihood-basedmeasure of goodness-of-fit to
these data [24]. This is only the first step. We repeat this four more times, with each
of the remaining four subsets in turn playing the role of the 20% validation set and
the others being the training set. The result is five sets of predictions, from which
we may derive an average partial-likelihood goodness of fit.. This entire process
is repeated for a range of values of #, and we select that value that produces the
optimum goodness of fit. See Goeman et al. [23] for a detailed description of the
cross-validation process used by the “penalized” package.

We illustrate the use of this method using data from a study of patients with
hepatocellular carcinoma on whom a range of clinical and biomarker covariates
were taken [42, 43]. The data, which are in “hepatoCellular”, contains 17 clinical
and biomarker measurements on 227 patients, as well as overall survival and time
to recurrence, both recorded in months. Of the 227 patients, 117 have levels of a
variety of chemokines and other markers, some representing levels in the tumor
itself and some outside the tumor. Constructing a predictive model that will be used
in practice is a complex process that involves interplay between the known science
about the predictors and the optimal predictive model, tethered by the realities of
implementation; see for example Kuhn [38] for discussion of these issues. That said,
for the purposes of illustration, we shall use 26 of these measurements (columns 23
to 48) as potential predictors of overall survival using a lasso model. We begin by
selecting the 117 patients with complete data:

hepatoCellularNoMissing <-
hepatoCellular[complete.cases(hepatoCellular),]

Here is a sample of the data and predictors we shall use in this illustration,
including “OS” (overall survival), “Death” (censoring), and a few of the cytokine
measurements, for patient numbers 1, 76, and 131 (which are numbers 1, 5, and 12
in the non-missing subset):



12.3 The Lasso Method for Selecting Predictive Biomarkers 195

> hepatoCellularNoMissing[c(1,5,12),c(16,17, 23:27)]
OS Death CD4T CD4N CD8T CD8N CD20T

1 83 0 2.600000 0.000000 190.6000 126.80 20.950000
76 20 1 14.450000 2.758621 2.1500 38.95 26.100000
131 35 1 2.821133 8.294828 8.0064 62.64 2.821133

The R library “penalized”, which must be separately downloaded and installed,
contains a number of functions to support the fitting of lasso models. In the follow-
ing example, we first attach the complete data subset “hepatoCellularNoMissing” so
that “OS” and “Death” are available, and then attach the “penalized” library. Then
we fit a simple lasso model using the 26 predictors (columns 23 to 48), and we fix
the penalty at # D 10. Also, since the biomarker ranges vary widely, we standardize
them (“standardize = T”) so that they all have a standard deviation of 1. Here are the
results:

> attach(hepatoCellularNoMissing)
> library(penalized)
> hepato.pen <- penalized(Surv(OS, Death),
+ penalized=hepatoCellularNoMissing[,23:48],

standardize=T, lambda1=10)
# nonzero coefficients: 7

The result of the model consists of seven non-zero coefficients. We may list their
values using the “coef” function. For compactness, we round them to three decimal
places.

> round(coef(hepato.pen, standardize=T), 3)
CD8N CD68T CD4TR CD8TR CD68TR Ki67 CD34

0.104 0.258 -0.035 -0.096 0.111 0.285 -0.013

The “penalized” function requires that we specify a value for #, and we did this
by rather arbitrarily selecting the value 7. As discussed earlier, we can use cross-
validation to select a value that optimizes the predictive ability of the lasso model,
as defined by maximizing the cross-validated partial log-likelihood (CVL). We can
plot the CVL (using ten-fold cross-validation) as a function of lambda as follows:

set.seed(34)
hepato.prof <- profL1(Surv(OS, Death),

penalized=hepatoCellularNoMissing[,23:48],
standardize=T, fold=10, minlambda1=2, maxlambda1=12)

plot(hepato.prof$cvl ~ hepato.prof$lambda, type="l", log="x",
xlab="lambda", ylab="Cross-validated log partial likelihood")

The purpose of “set.seed” is to set the random number seed so that we can reproduce
this model fit exactly. The results, in Fig. 12.7, show a CVL with two local maxima.

To find the optimal value, we use “OptL1” with the same starting seed.

> set.seed(34)
> hepato.opt <- optL1(Surv(OS, Death),
+ penalized=hepatoCellularNoMissing[,23:48], standardize=T,

fold=10)
> hepato.opt$lambda
[1] 8.242321
> abline(v=hepato.opt$lambda, col="gray")
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Fig. 12.7 Cross-validated log partial likelihood for a range of values of lambda for the hepato-
cellular data. The vertical gray line shows the global maximum at # D 8:24, which was obtained
using the “OptL1” function in the “penalized” package

The optimal value is 8.24, and this is added to the plot in figure using “abline”.
This example illustrates that it is important to plot the CVL versus lambda, since
it may have local maxima, and we want to be sure that the numerical optimization
procedure in “OptL1” has selected the global maximum.

The number and magnitude of the coefficient estimates depends on the value
of #. To illustrate this, we use the “penalized” function now with “steps=20”. This
computes the penalized CVL for a range of 20 values of #, starting with the specified
minimum (# D 5) up to the maximum (the smallest value of # for which there are
no covariates in the lasso model). We then use the “plotpath” function to plot the
coefficient profiles:

hepato.pen <- penalized(Surv(OS, Death),
penalized=hepatoCellularNoMissing[,23:48], standardize=T,
steps=20, lambda1=5)

plotpath(hepato.pen, labelsize=0.9, standardize=T, log="x",
lwd=2)

abline(v=hepato.opt$lambda, col="gray", lwd=2)

The results are in Fig. 12.8.
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Fig. 12.8 Paths of the standardized coefficient estimates over a range of values of the lasso
constraint #. The vertical gray line is the optimal value of #, the same value as in Fig. 12.7

The vertical gray line is at the optimum value # D 8:24. The eight paths
that it intersect are positive coefficients Ki67, CD68T, CD8N, and CD68TR, and
negative coefficients CD4NR, CD34, CD4TR, and CD8TR. While a few of the
labels are legible in the plot, we may examine them by using the “penalized”
function evaluated at the optimal value we found for #,

> hepato.pen <- penalized(Surv(OS, Death),
+ penalized=hepatoCellularNoMissing[,23:48], standardize=T,
+ lambda1=hepato.opt$lambda)
# nonzero coefficients: 8
> round(coef(hepato.pen, standardize=T), 3)

CD8N CD68T CD4NR CD4TR CD8TR CD68TR Ki67 CD34
0.133 0.269 -0.009 -0.076 -0.149 0.102 0.328 -0.044

Unlike the partial likelihood models discussed in earlier chapters, the magnitude
of these parameter estimates are not intended to be interpreted in terms of hazard
ratios. For one thing, the lasso procedure has shrunken them, and for another,
they are standardized to have standard deviation one. Rather, they are used to
predict the survival profile for a new patient using that patient’s array of biomarker
measurements. For example, to show the predicted survival profiles for patients 1,
5, and 12, we use the “predict” function:

plot(predict(hepato.pen,
penalized=hepatoCellularNoMissing[c(1, 5, 12),23:48]))
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This plot function, unfortunately, does not identify which patient is which. To do
this, we need to do something more complicated. First, we find the predicted models
for each of these three patients in turn.
hepato.predict.1 <- predict(hepato.pen,

penalized=hepatoCellularNoMissing[1,23:48])
hepato.predict.5 <- predict(hepato.pen,

penalized=hepatoCellularNoMissing[5,23:48])
hepato.predict.12 <- predict(hepato.pen,

penalized=hepatoCellularNoMissing[12,23:48])

The results of the “predict” function for the “penalized” package are of a different
form than we have seen in the past. Most of our R functions produce what are called
“S3” class R objects, with components that can be accessed via the “$” operator.
The object “hepato.predict.1”, as well as the next two, are “S4” class R objects.
This means that, rather than components, they have “slots”. We can see their names
via the “slotNames” function:
> slotNames(hepato.predict.1)
[1] "time" "curves"

We access these names using the “@” operator, e.g. “hepato.predict.1@time” for the
survival times, and “hepato.predict.1@curves” for the values of the survival curves.
To plot them, we need to convert them into step functions via the “stepfun” function.
This function requires that we drop the first element of the “time” vector. The plots
may be obtained as follows:
plot(stepfun(hepato.predict.1@time[-1], hepato.predict.1@curves),

do.points=F, ylim=c(0,1),
xlab="Time in months", ylab="Predicted survival probability")

plot(stepfun(hepato.predict.5@time[-1], hepato.predict.5@curves),
do.points=F, add=T, col="blue", lwd=2)

plot(stepfun(hepato.predict.12@time[-1], hepato.predict.
12@curves),
do.points=F, add=T, col="red")

The results of the plot is given in Fig. 12.9.
The legend is added as follows:

legend("bottomleft", legend=c("Patient 1", "Patient 5",
"Patient 12"), col=c("black", "blue", "red"))

Exercises

12.1. For the data subset discussed in Sect. 12.1, repeat the analysis using 12-month
intervals instead of 24-month intervals. How do the parameter estimate for T2 and
its standard error change?

12.2. Repeat Exercise 12.2, but use 1-month grouping for the piecewise exponen-
tial. Since the survival times are given to us as numbers of months, this method is a
way of fitting a proportional hazards model with heavily tied survival times.
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Fig. 12.9 Predicted survival curves for three patients using the lasso model “hepato.pen”

12.3. Consider the interval-censored data in the data set “cmv” in the “Icens”
package. This data consists of times to shedding of cytomegalovirus (CMV) and to
colonization of mycobacterium avium complex. Use the “icfit” function to estimate
the survival curve for time to CMV shedding, and plot it. Identify the intervals
on which the survival distribution estimate is ambiguous. Repeat for time to MAC
colonization. See Betensky and Finkelstein [7].

12.4. Use the “penalized” package on the full set of predictors in the “hepato-
Cellular” data, including clinical predictors, following the procedure outlined in
Sect. 12.3. How many of the predictors from the model with the optimal value of #
from Sect. 12.3 remain in the predictive model?



Appendix A
A Basic Guide to Using R for Survival Analysis

A.1 The R System

This first section of the appendix provides a brief but necessarily incomplete
introduction to the R system. Readers with little prior exposure to R can start here,
and then follow up with one of the many books or online guides to the R system.
Succeeding sections cover specialized R topics relevant to using R for survival
analysis.

The R statistical system, which henceforth we will refer to as just “R”, is a
programming language geared to doing statistical analyses. It was created by Ross
Ihaka and Robert Gentleman at the University of Auckland in New Zealand and,
since 1997, has been maintained by a core group of about twenty developers in
diverse locations. More information about the R system and its maintenance may
be found at the website http://cran.r-project.org. It is an interpretative language,
meaning that it interprets and executes code as the user types it, or as it reads code
from a file. It includes features for creating and manipulating variables, vectors and
matrices. It can also work with the more advanced structures known as data frames,
arrays and lists. It also has facilities for creating plots, and it has a special format
for handling missing values, which are a common feature of data sets. Its facilities
overlap with those of widely used commercial statistical software packages. Like
them, it provides a wide range of statistical procedures, and includes facilities for
manipulating statistical data. Unlike those packages, however, R is “open source,”
meaning essentially that the code is freely available and free to distribute. There
are, however, certain licensing restrictions, a key one being that any code derived
from existing R code must also be made freely available. The absence of any cost
to downloading and installing R has led to widespread worldwide adoption of the
system, and encouraged researchers who develop new statistical methods to make
those methods available in R.
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To install the system in Microsoft Windows, go to http://cran.r-project.org/bin/
windows/base/ and follow the instructions. The Windows installer will create an
icon on the desktop or the start menu. (On a 64-bit Windows installation, two icons
will be created, one for a 32-bit version and one for a 64-bit version. The latter
version will include “x64” in the icon name.) R is also available for Apple OS and
Linux OS; see the main R site at http://cran.r-project.org for details.

To start R, click on the icon (for now, either the 32- or 64-bit version is fine)
as you would with any standard Windows program. A command window will open
up with a “>” prompt. The command window includes several dropdown menus
for opening or creating files of R commands, for installing “packages” to provide
additional functionality to the system, and for accessing the help system. While one
can carry out any R procedure from the base system, more advanced users may
prefer to use a separate editor for creating R programs. A free editor that works
well with R is “Tinn-R”, which may be downloaded from https://sourceforge.net/
projects/tinn-r. Alternatively, one can use a full-fledged programming environment
called Rstudio. When launched, R Studio automatically detects the most current
version of R on your system, and opens that up in one of four window panes. Other
panes include an editor for writing R code, a viewer that shows the names of objects
you have created, and a plot viewer. Rstudio may be downloaded from http://www.
rstudio.com/ide/download/desktop.

This guide provides a brief introduction to those aspects of R most useful for
survival analysis. A guide to more complete treatments of the R language may be
found at http://www.r-project.org/doc/bib/R-books.html.

A.1.1 A First R Session

The purpose of this session is to show how to start up R, carry out a few simple
numerical operations, and then exit the system. First, start R from the start menu of
Windows or from the Desktop. You will see the R Console, a window with a “>”
prompt. This is the R window into which you type commands and receive responses.
To get a feel for how R works, enter a numerical expression, such as this:

> 2 + 3
[1] 5

The “>” symbol is the prompt that R provides, and following that is “2C 3”, which
the user types. The “[1]”, which is perhaps superfluous here, just indicates that the
printed result is the first (and in this simple case only) element of the result. (The
purpose of the output format will become clear when you look at long vectors that
stretch out over more than one line.)

http://cran.r-project.org/bin/windows/base/
http://cran.r-project.org/bin/windows/base/
http://cran.r-project.org
https://sourceforge.net/projects/tinn-r
https://sourceforge.net/projects/tinn-r
http://www.rstudio.com/ide/download/desktop
http://www.rstudio.com/ide/download/desktop
http://www.r-project.org/doc/bib/R-books.html
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Now try some other operations. Note that the “#” symbol indicates the start of a
“comment”, and is not interpreted by the computer.

> 2^3
[1] 8
> 2**3 # same thing
[1] 8

> x <- 3 # assign 3 to the variable x
> y <- 2
> y^x
[1] 8

> y**x
[1] 8

> q() # end the R session

In addition to constants, R can work with vectors, as shown in the following code:

> x.vec <- c(1, 3.5, 7)
> y.vec <- c(2, 7, 8.6)
> x.vec
[1] 1.0 3.5 7.0
> y.vec
[1] 2.0 7.0 8.6

Here we have defined two vectors, “x.vec” and “y.vec”, each of length 3. The “.vec”
ending of the names is for the convenience of the user only; any name that consists
of letters and numbers and certain separators such as “.” or “_” can be use. Beginners
should note that unlike in some other statistical systems, R is case sensitive; that is,
upper- and lower-case letters are interpreted as distinct. Thus, for example, “X.vec”
and “x.vec” are two different names.

Vectors may be added and multiplied, as long as they are the same length. Also,
constants may multiply vectors.

> x.vec
[1] 1.0 3.5 7.0
> y.vec
[1] 2.0 7.0 8.6
> x.vec + y.vec
[1] 3.0 10.5 15.6

> z.vec <- 2*y.vec
> z.vec
[1] 4.0 14.0 17.2

The “c()” function may also be used to combine vectors,

> z.vec <- c(x.vec, y.vec)
> z.vec
[1] 1.0 3.5 7.0 2.0 7.0 8.6
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and individual components of vectors may be accessed by index. For example, to
list the first four elements of z.vec, we can use the “:” to get the indices from 1 to 4,

> z[1:4]
[1] 1.0 3.5 7.0 2.0

Vectors may also contain characters,

> w.vec <- c("a", "A", "aBc")
> w.vec
[1] "a" "A" "aBc"

In survival analysis, there is a special structure for right-censored survival data.
To use this, one first must load the “survival” package, which is included in the
main R distribution,

library(survival)

Next, define the survival times “tt” and the censoring indicator “status”, where
“status = 1” indicates that the time is an observed event, and “status = 0” indicates
that it is censored. Then the “Surv” function binds them into a single object. In the
following example, time 6 is right censored, while the others are observed event
times,

> tt <- c(2, 5, 6, 7, 8)
> status <- c( 1, 1, 0, 1, 1)
> Surv(tt, status)
[1] 2 5 6+ 7 8

If you enter an R command that is syntactically incomplete, it will continue
onto the next line with a “+” symbol, where you can complete the command. For
example,

> tt <- c(2, 5, 6,
+ 7, 8)
> tt
[1] 2 5 6 7 8

This feature is particularly convenient for long commands that will not fit on a single
line.

The character “#” is used to introduce a comment; anything written after this
character will be ignored by the R system. This is useful for annotating code, e.g.

> Surv(tt, status) # Create a survival data structure

Finally, to quit the R session, use the “q()” function, with no arguments,

> q()

A.1.2 Scatterplots and Fitting Linear Regression Models

We use linear regression methods in survival analysis in a number of ways, so we
introduce it along with the plot function here. To illustrate, let’s create two vectors,
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> x.vec <- 1:10
> x.vec
[1] 1 2 3 4 5 6 7 8 9 10
>
> y.vec <- 3 + 2*x.vec + rnorm(10, mean=0, sd=2)
> y.vec
[1] 6.758104 4.148936 10.208296 11.320387 11.840879 15.407382

18.228854
[8] 22.381251 21.130111 26.600463

The vector “x.vec” was created using the “:” operator to obtain the integers from
1 to 10, and the vector “y.vec” is defined as

y D 3C 2xC ";

where + is a standard normal random variable with mean 0 and standard deviation 2.
Notice that when “y.vec” is printed, its values wrap onto the second line. the “[8]”
on the second line indicates that this line begins with the 8th element of the vector.
One may easily plot y.vec vs. x.vec,

plot(y.vec ~ x.vec)
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The plot may be enhanced by specifying ranges for the x and y variables, and
with specific labels for the axes,

> plot(y.vec ~ x.vec, xlim=c(0, 10), ylim=c(0, 30),
+ xlab="x", ylab="y")
> title("A simple plot")
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To fit a linear regression line through these points, use the “lm” function, with
“y.vec” as the outcome variable, “x.vec” as the predictor variable, and “~” meaning
“regressed on”. In the following, the results of fitting a linear regression model are
put into a “data structure” which we have chosen to call “result.lm”. To print out a
brief summary of the structure, just type its name,

> result.lm <- lm(y.vec ~ x.vec)
> result.lm
Call: lm(formula = y.vec ~ x.vec)
Coefficients:
(Intercept) x.vec

2.925 2.119

The output indicates that the fitted regression model is given by y D 2:925C2:119x.
To plot this fitted line on the above scatterplot, use the “abline” function,

> abline(result.lm)
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A more complete output of the linear regression, including standard errors and
hypothesis tests, may be obtained by entering “summary(result.lm)”.

A.1.3 Accommodating Non-linear Relationships

A non-linear relationship between y and x will require more sophisticated tools.
To illustrate, let us suppose that the true relationship between y and x is given by
y D 2x3 " 9x2 C 5xC 6. We may define this as an R function as follows:

ff <- function(x) {
result <- 2*x^3 - 9*x^2 + 5*x + 6
result
}

This function, which we have named “ff”, takes a value (or a vector of values),
evaluates the defined polynomial at those values, and puts the result in an R object
named “result”. The last object in the function (“result”) is the value that the function
returns. For example, to evaluate the function at 0, 1, and 2, we can do the following:

> ff(x=c(0, 1, 2))
[1] 6 4 -4
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We simulate points with this relationship, with error, by defining the relationship
as a function, creating a series of x values, and then the y values, as follows:
> x.vec <- (-99:400)/100 # create 500 points between -1 and 4
> y.vec <- ff(x.vec) + 10*rnorm(500) # fixed and random effects

We may plot these points, and the “true” functional relationship, shown as a red
curve, as follows:
> plot(y.vec ~ x.vec, col="gray")
> curve(ff, from=-1, to=4, col="red", lwd=2, add=T)

A straightforward way to model such a non-linear relationship is to create quadratic
and cubic forms of the x-values, and incorporate them into a linear model as follows:
> x2.vec <- x.vec^2
> x3.vec <- x.vec^3
> result.lm <- lm(y.vec ~ x.vec + x2.vec + x3.vec)
> summary(result.lm)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.9369 0.7911 8.769 < 2e-16 ***
x.vec 4.1090 0.9969 4.122 4.4e-05 ***
x2.vec -9.1537 0.9079 -10.082 < 2e-16 ***
x3.vec 2.0945 0.1936 10.818 < 2e-16 ***
--- Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 10.23 on 496 degrees of freedom

We see that the coefficient estimates closely match the originals, as does the
“Residual standard error”, which matches & D 10 in the original error function.

In this case, the “true” relationship was a cubic polynomial function. But if the
relationship between y and x were some other function, not necessarily a polynomial
one, what could we do? There is a technique called “locally weighted scatterplot
smoothing”, often abbreviated by “loess” for, presumably, “LOcal rESSion”. This
is implemented in R as the “loess” function. We may use this function as follows:
result.smooth <- loess(y.vec ~ x.vec)
smooth.estimates <- predict(result.smooth)
lines(smooth.estimates ~ x.vec, col="blue", lwd=2)

However, we shall find it helpful to plot not only the smooth function but also 95%
confidence intervals. To do this, we define a function that fits a loess curve and also
95% confidence intervals for this curve, and plots them:
smoothSEcurve <- function(yy, xx) {

# use after a call to "plot"
# fit a lowess curve and 95% confidence interval curve

# make list of x values
xx.list <- min(xx) + ((0:100)/100)*(max(xx) - min(xx))

# Then fit loess function through the points (xx, yy)
# at the listed values
yy.xx <- predict(loess(yy ~ xx), se=T,

newdata=data.frame(xx=xx.list))
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Fig. A.1 Smooth loess curve (blue) and true functional relationship (red)

lines(yy.xx$fit ~ xx.list, lwd=2)
lines(yy.xx$fit -

qt(0.975, yy.xx$df)*yy.xx$se.fit ~ xx.list, lty=2)
lines(yy.xx$fit +

qt(0.975, yy.xx$df)*yy.xx$se.fit ~ xx.list, lty=2)
}

We use this function to add the smooth curve and confidence limits as follows:

smoothSEcurve(y.vec, x.vec)

The plot is shown in Fig. A.1.

A.1.4 Data Frames and the Search Path for Variable Names

R provides a special data structure, the “data frame”, to conveniently store variables
for statistical data analysis. A data frame is a two-dimensional array with named
columns. Like many R packages, the survival package includes data sets as in the
form of data frames to use as examples. The data set “lung” contains survival data
on 228 patients with advanced lung cancer; here is a subset of the first six rows and
seven columns:
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> lung[1:6,1:7]
inst time status age sex ph.ecog ph.karno

1 3 306 2 74 1 1 90
2 3 455 2 68 1 0 90
3 3 1010 1 56 1 0 90
4 5 210 2 57 1 1 90
5 1 883 2 60 1 0 100
6 12 1022 1 74 1 1 50

The survival variables are “time” (days from enrollment until death or censoring),
“status” (1 for censoring, 2 for dead), and a number of other possibly relevant
covariates. A detailed description of the data set may be found by typing “?lung” at
the R prompt. Individual columns of the data frame may be accessed in two ways:
by column number or by column name. Here are examples of accessing the “time”
column in these two ways; in each case, the first few components are shown:

> time.A <- lung[,2]
> time.B <- lung$time
> time.A[1:5] [1] 306 455 1010 210 883
> time.B[1:5] [1] 306 455 1010 210 883

Alternatively, one can “attach” the data frame, in which case all of the variable
names can be accessed by name:

> attach(lung)
> time[1:5]
[1] 306 455 1010 210 883

To avoid errors in referencing variables, it is important to realize that the variable
name “time” is placed on what is known as a “search path”. When a user types a
variable name such as “time”, the R system first searches the current workspace for
a definition of the variable; finding none, it then looks into any attached data frames;
in this case, it is “lung” and there it finds the variable named “time”. If we redefine
the variable “time” in the workspace, it will take preference:

> time <- c(1,2,3,4)
> time
[1] 1 2 3 4

Now, the variable “time” has been defined in the workspace as the numbers from
1 to 4. If we remove (i.e. delete) this variable with the “rm” command, this version
of the variable goes away, and the version of “time” in the attached “lung” data
frame again becomes visible:

> rm(time)
> time[1:5]
[1] 306 455 1010 210 883

This example illustrates the importance of keeping track of the variable names
visible in an attached data frame, and ensuring that no variables of the same name
are defined in the user workspace.
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A.1.5 Defining Variables Within a Data Frame

When one needs to re-define variables in a data frame, it is often helpful to carry out
the necessary calculations within the data frame itself using the “within” function.
For example, suppose for the “lung” data we want to define a new censoring variable
“delta” which takes the values 0 for a censored variable and 1 for an event. We can
do this as follows:

lung <- within(lung, {
delta <- status - 1 })

We may see the new variable “delta” as follows:

> lung[1:6, c(1:7, 11)]
inst time status age sex ph.ecog ph.karno delta

1 3 306 2 74 1 1 90 1
2 3 455 2 68 1 0 90 1
3 3 1010 1 56 1 0 90 0
4 5 210 2 57 1 1 90 1
5 1 883 2 60 1 0 100 1
6 12 1022 1 74 1 1 50 0

In this way, one can directly incorporate new variables into the data frame without
creating new ones in the R workspace.

A.1.6 Importing and Exporting Data Frames

Data frames may be most easily imported and exported using “comma-separated”
files. Such files, when saved with a “.csv” extension, will open in Windows as an
Excel file by default. Such files can easily be imported into other statistical packages
if needed, since the file contains no special-purpose non-printing characters. For
example, suppose we need to export the “lung” data. We can export it to a directory,
say, “C:\survival” as follows:

> setwd("c:\\survival")
> write.csv(lung, file="lung.csv", na=".", row.names=F)

Since R treats the backslash character “\” as an escape character (imparting
special meaning to certain letters), it cannot be used alone when referring to a
Windows directory. Rather, it has to be doubled to correctly reference the windows
directory “C:\survival”. In this example, the function “setwd” sets the “working
directory” to the “C:\survival” Windows folder, assuming that this folder has been
created previously outside of the R program. The command “write.csv” writes out
the file in comma separated form into the file named “lung.csv”. The option “na=”
defines the outputted missing value code to be the specified value, here a dot, “.”.
Without this option, R will write out “NA” (the R missing value code) for missing
values. Finally, the “row.names=F” option suppresses numbered row names, which
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are usually unnecessary for exported files. The first few rows of the resulting file, if
viewed using a text editor, look like this:

"inst","time","status","age","sex","ph.ecog","ph.karno","meal.cal"
3,306,2,74,1,1,90,1175
3,455,2,68,1,0,90,1225
3,1010,1,56,1,0,90,.
5,210,2,57,1,1,90,1150
1,883,2,60,1,0,100,.

The first row is a list of column names, and the remaining rows contain the data. If
this data set weren’t already in R, and one needed to import it, one would do the
following:

> setwd("c:\\survival")
> lung2 <- read.csv("lung.csv", na.strings=".", header=T)
> head(lung2)

inst time status age sex ph.ecog ph.karno meal.cal
1 3 306 2 74 1 1 90 1175
2 3 455 2 68 1 0 90 1225
3 3 1010 1 56 1 0 90 NA
4 5 210 2 57 1 1 90 1150
5 1 883 2 60 1 0 100 NA
6 12 1022 1 74 1 1 50 513

The option “na.strings=” tells R that, in the Windows file, the “.” character indicates
missing values, so that they are recognized as such during the import process, and
represented using R’s missing data indicator “NA”. The “header=T” option tells R
that the first row consists of column names.

A.2 Working with Dates in R

Often survival data come in the form of calendar dates. Typically we are given the
date of entry into a trial, the date of death, and the date a patient was last seen, if
still alive. We must then compute the intervening times, and determine if a final date
represents a death or a censored observation. With medical data, time is measured
in days, although that may be later converted to months or years for presentation
purposes. The R package “date”, which must be explicitly downloaded and installed,
allows us to work with data in date format. To do this from the R window, click
on the “Packages” tab to get a pull-down menu. Then click on “Install packages”.
You may be asked to select a “repository.” In that case, choose your country and
then a location near you. Then you will get a pop-up window that lists all available
packages in alphabetical order. Highlight the “date” package and then “install”. The
package will then be installed on your R system, and will be available for use in this
and future occasions when you use R.
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A.2.1 Dates and Leap Years

R includes a special “date” format. When you examine a variable with dates in that
format, you will see a listing that is given in “day-month-year” format. Internally,
however, the date is stored as an integer that represents the number of days between
the date of interest and the reference date, which is January 1, 1960. This reference
date is arbitrary, but often used by computer packages; when you subtract date
objects, the results will be the number of intervening days between the two dates.
The date package is written to accommodate leap years, by including February 29
in calculations only when a leap year is involved. It also understands that the year
2000 was a leap year but that the year 1900 was not a leap year. This latter fact
would become relevant if, for example, one works with birth dates of individuals
born before 1900. (Leap years in the Gregorian calendar occur in years that are
multiples of 4, except for years that are multiples of 100; a further exception is that
years that are multiples of 400 are leap years, which is why the year 2000 was a leap
year. See http://aa.usno.navy.mil/faq/docs/leap_years.php,maintained by the United
States Naval Academy, for more details.)

A.2.2 Using the “as.date” Function

Once the date package has been installed, you may load it by typing “library(date)”
at the R prompt. The “as.date” function can then be used to convert dates in character
form into R dates. Here are some examples of two dates:

> date.1 <- as.date("8/31/1956")
> date.2 <- as.date("7/5/1957")
> date.1
[1] 31Aug56
> date.2
[1] 5Jul57

We may see that there are 308 days separating these two dates as follows:

> date.2 - date.1
[1] 308

We may “look inside” the dates to reveal the internally-stored number of days using
the “as.numeric” function. For example,

> as.numeric(date.1)
[1] -1218
> as.numeric(as.date("1/1/1960"))
[1] 0

This shows that the first date, August 31, 1956, is 1,218 days before the reference
date of January 1, 1960. Also, we see that the reference date itself is stored as 0.

http://aa.usno.navy.mil/faq/docs/leap_years.php
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We may illustrate the leap-year issue as follows:

> as.date("2/29/2000")
[1] 29Feb2000
> as.date("2/29/1900")
[1] <NA>

This shows that February 29, 2000 is a legitimate date, whereas February 29, 1900
does not exist. (The value “NA” is a missing value indicator in R.)

Dates may also be input in text format:

> as.date("January 30 2005")
[1] 30Jan2005

The default format is “month-day-year”, but it is possible to specify dates in “day-
month-year” format using the “order” option:

> as.date("30/1/2005", order="dmy")
[1] 30Jan2005

Dates may also be vectors. Here is a small example that illustrates what may arise
in survival analysis:

> entry.dates <- c("9/20/2010", "9/30/2010", "11/2/2010",
"1/5/2011")

> death.dates <- c("5/4/2013", NA, "6/9/2013", "4/5/2012")
> lastSeen.dates <- c("5/4/2013", "8/21/2013", "6/9/2013",

"4/5/2012")
>
> entry <- as.date(entry.dates)
> death <- as.date(death.dates)
> lastSeen <- as.date(lastSeen.dates)

We have defined entry, death, and date last seen dates for four patients. The second
patient was known to still be alive as of August 21, 2013, so that person’s death date
is denoted by the missing value “NA”. We define survival and censoring times as
follows:

> censor <- as.numeric(!is.na(death))
> censor
[1] 1 0 1 1
> survTime.temp <- death - entry
> survTime.temp
[1] 957 NA 950 456

We have defined the censoring variable to be 1 if a death is observed and 0 if the
person is censored, i.e., still alive at the time the data are analysed. The survival
times are defined for all but the second patient; we fix that up as follows:

> survTime <- survTime.temp
> survTime[censor == 0] <- lastSeen[censor == 0]

- entry[censor == 0]
> survTime
[1] 957 1056 950 456
> censor
[1] 1 0 1 1
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The variables “survTime” and “censor” are now fully-formed survival variable ready
for analysis. We may combine them into a survival object using the “Surv” function
in the “survival” package,

> library(survival)
> Surv(survTime, censor)
[1] 957 1056+ 950 456

This form of a survival variable show that the second survival time is censored at
1056 days (the time to death, though unknown, is known to be larger than 1056
days), whereas the others represent numbers of days until death.

A.3 Presenting Coefficient Estimates Using Forest Plots

The results of fitting a statistical model are typically presented as a table of
coefficient names, coefficient estimates, standard errors, Z values, and p-values.
Consider for example the survival dataset “veteran” that is included in the survival
package. This data set of lung cancer patients consists of survival variable “time”,
censoring indicator “status”, and several covariates, including “trt” (treatment),
which takes the values “standard” and “test”, and “celltype”, which can be either
squamous, small cell, adeno, or large cell. In the output below, we re-define
“treatment” as a factor with levels “standard” and “treatment” and then fit a Cox
proportional hazards model with treatment and cell type as predictors. (See Chaps. 5
and 6 for a discussion of the Cox model and examples of model fitting.)

> library(survival)
> head(veteran)

trt celltype time status karno diagtime age prior
1 1 squamous 72 1 60 7 69 0
2 1 squamous 411 1 70 5 64 10
3 1 squamous 228 1 60 3 38 0
4 1 squamous 126 1 60 9 63 10
5 1 squamous 118 1 70 11 65 10
6 1 squamous 10 1 20 5 49 0

> trt.f <- factor(trt, labels=c("standard", "test"))
> result <- coxph(Surv(time, status) ~ trt.f + celltype,
+ data=veteran)
> result

coef exp(coef) se(coef) z p
trt.ftest 0.198 1.22 0.197 1.00 3.1e-01
celltypesmallcell 1.096 2.99 0.272 4.02 5.7e-05
celltypeadeno 1.169 3.22 0.295 3.96 7.4e-05
celltypelarge 0.297 1.35 0.286 1.04 3.0e-01
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The result of the Cox model is put into the data structure named “result”. Typing
“result” produces the parameter estimates. The coefficient “trt.ftest” is the result of
comparing “test” to “standard” therapy. The next three coefficient estimates are for
three cell types compared to the reference cell type, which is “squamous”.

It is helpful to present these results in graphical form using a display tool called
a “forest plot”. This type of display was originally developed as a way to present
the results of a meta-analysis, which is a type of study that summarizes the results
of a large number of related studies. We adapt this display for our purposes, using
the “forestplot” function in the package also named “forestplot” (which must be
downloaded from CRAN and installed). We set up the parameter estimates and
confidence limits as follows; we use “NA”s, empty strings, and extra spaces to
control the format of the plot.
coef.est <- c(NA, NA, 0, 0.198, NA, NA, NA, 0, 1.096, 1.169, 0.297)
se.est <- c(NA, NA, 0, 0.197, NA, NA, NA, 0, 0.272, 0.295, 0.286)
lower <- coef.est - 1.96*se.est
upper <- coef.est + 1.96*se.est
label.factors <- matrix(c("Treatment Group", "", " standard",

" test", "", "Cell Type", "", " sqamous", " smallcell",
" adeno", " large"), ncol=1)

Finally, we produce the plot. We use constant box sizes, and the option “txt_gp”
to control the label sizes.
library(forestplot)
forestplot(label.factors, coef.est, lower=lower, upper=upper,

boxsize=0.4, xticks=c(-0.5,0,0.5, 1, 1.5, 2),
txt_gp=fpTxtGp(label=gpar(cex=1.5)))

The resulting plot is shown in Fig. A.2. We can see that the log hazard ratio for
the test treatment is slightly positive, indicating a small (non-significant) deleterious

Treatment Group
   standard
   test

Cell Type
   sqamous
   smallcell
   adeno
   large

−0.5 0 0.5 1 1.5 2
Log hazard ratio

Fig. A.2 Forest plot of parameter estimates for the “veterans” dataset
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effect of the test treatment as compared to the standard. We also see that the effect
of small cell and adeno celltypes is similar, and larger than squamous (the reference
level) and large cell. Of course, if additional covariates are included in the model,
they can be included in the plot by direct extension of the code given above.

A.4 Extracting the Log Partial Likelihood and Coefficient
Estimates from a coxph Object

As explained in Chap. 5, the log partial likelihood is a crucial component of a Cox
model. With appropriate options, we may use the “coxph” function to evaluate
the log partial likelihood at a particular value of the parameters. This specialized
procedure is not necessary in ordinary data analysis, but is useful for specialized
applications and for illustrating concepts, as in Sects. 5.3 and 5.4. We shall illustrate
this by again using the “veteran” survival data. For simplicity, we shall define a
new variable “treatInd” which is 1 for the test and 0 for the control treatments
respectively. Then we fit a Cox model and examine the result:

> library(survival)
> attach(veteran)
> testInd <- trt - 1 # now 0 refers to standard, and 1 to test
> result <- coxph(Surv(time, status) ~ testInd)
> result

coef exp(coef) se(coef) z p
testInd 0.0177 1.02 0.181 0.0982 0.92

Likelihood ratio test=0.01 on 1 df, p=0.922

We can explicitly evaluate the log partial likelihood at a particular value of the
coefficient by specifying the initial value of the coefficient, and blocking iteration
by setting the maximum number of iterations to 0:

> result.cox.0 <- coxph(Surv(time, status) ~ testInd,
+ init=0, control=list(iter.max=0))
> loglik.0 <- result.cox.0$loglik[2]
> loglik.0
[1] -505.4491

The log (partial) likelihood evaluated at ˇ D 0 is the second element of the “loglik”
component, specifically, "505.4491.

To get the log partial likelihood at the maximum, we use the m.p.l.e from the
output or, to get a more precise value, we do the following:

> coef.mple <- as.numeric(result$coef)
> coef.mple
[1] 0.01774257
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We may evaluate the log partial likelihood at the maximum and compute the
likelihood ratio test statistic, D D 2

#
l. Ǒ/ " l.0/

$
as follows:

> result.cox.max <- coxph(Surv(time, status) ~ testInd,
+ init=coef.mple, control=list(iter.max=0))
> loglik.max <- result.cox.max$loglik[2]
> 2*(loglik.max - loglik.0)
[1] 0.009643379

According to standard statistical theory, this is to be compared to a chi-square
distibution with one degree of freedom. We evaluate this using the “pchisq”
function:

> pchisq(0.009643379, 1, lower.tail=F)
[1] 0.9217729

We see that the p-value is approximately 0.92 (the same as given in the standard
coxph output above), so that the treatment difference is not statistically significant.
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