cola Report for Consensus Partitioning

Date: 2021-01-11 00:37:22 CST, cola version: 1.9.0.1013

Document is loading...


Summary

First the variable is renamed to res_list.

res_list = final

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 1 methods.
#>   On a matrix with 13 rows and 2737 columns.
#>   Top rows are extracted by 'ATC' methods.
#>   Subgroups are detected by 'skmeans' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6, 7, 8, 9, 10.
#>   Performed in total 450 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["ATC", "skmeans"] or object["ATC:skmeans"]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat_adj, top_value_method = "ATC", partition_method = "skmeans", 
#>     max_k = 10, top_n = 13, mc.cores = 8)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1]   13 2737

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 1)

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partitioning methods. Clicking on the method name in the table goes to the corresponding section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance
ATC:skmeans 2 0.679 0.858 0.937

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 1)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 1)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 1)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 1)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 1)

plot of chunk tab-collect-consensus-heatmap-5

collect_plots(res_list, k = 7, fun = consensus_heatmap, mc.cores = 1)

plot of chunk tab-collect-consensus-heatmap-6

collect_plots(res_list, k = 8, fun = consensus_heatmap, mc.cores = 1)

plot of chunk tab-collect-consensus-heatmap-7

collect_plots(res_list, k = 9, fun = consensus_heatmap, mc.cores = 1)

plot of chunk tab-collect-consensus-heatmap-8

collect_plots(res_list, k = 10, fun = consensus_heatmap, mc.cores = 1)

plot of chunk tab-collect-consensus-heatmap-9

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 1)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 1)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 1)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 1)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 1)

plot of chunk tab-collect-membership-heatmap-5

collect_plots(res_list, k = 7, fun = membership_heatmap, mc.cores = 1)

plot of chunk tab-collect-membership-heatmap-6

collect_plots(res_list, k = 8, fun = membership_heatmap, mc.cores = 1)

plot of chunk tab-collect-membership-heatmap-7

collect_plots(res_list, k = 9, fun = membership_heatmap, mc.cores = 1)

plot of chunk tab-collect-membership-heatmap-8

collect_plots(res_list, k = 10, fun = membership_heatmap, mc.cores = 1)

plot of chunk tab-collect-membership-heatmap-9

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 1)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 1)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 1)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 1)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 1)

plot of chunk tab-collect-get-signatures-5

collect_plots(res_list, k = 7, fun = get_signatures, mc.cores = 1)

plot of chunk tab-collect-get-signatures-6

collect_plots(res_list, k = 8, fun = get_signatures, mc.cores = 1)

plot of chunk tab-collect-get-signatures-7

collect_plots(res_list, k = 9, fun = get_signatures, mc.cores = 1)

plot of chunk tab-collect-get-signatures-8

collect_plots(res_list, k = 10, fun = get_signatures, mc.cores = 1)

plot of chunk tab-collect-get-signatures-9

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> ATC:skmeans 2 0.679           0.858       0.937          0.463 0.537   0.537
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> ATC:skmeans 3 0.762           0.851       0.931          0.399 0.732   0.534
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> ATC:skmeans 4 0.687           0.732       0.834         0.0961 0.898    0.72
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> ATC:skmeans 5 0.768           0.783       0.893         0.0656 0.932   0.768
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> ATC:skmeans 6  0.76           0.707       0.839         0.0399 0.944   0.777
get_stats(res_list, k = 7)
#>             k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> ATC:skmeans 7 0.759           0.655       0.788         0.0271 0.94   0.737
get_stats(res_list, k = 8)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> ATC:skmeans 8  0.77           0.661       0.784         0.0209 0.963   0.811
get_stats(res_list, k = 9)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> ATC:skmeans 9 0.766           0.608       0.775         0.0193 0.968   0.823
get_stats(res_list, k = 10)
#>              k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> ATC:skmeans 10 0.778           0.565       0.746         0.0185 0.972   0.828

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

collect_stats(res_list, k = 7)

plot of chunk tab-collect-stats-from-consensus-partition-list-6

collect_stats(res_list, k = 8)

plot of chunk tab-collect-stats-from-consensus-partition-list-7

collect_stats(res_list, k = 9)

plot of chunk tab-collect-stats-from-consensus-partition-list-8

collect_stats(res_list, k = 10)

plot of chunk tab-collect-stats-from-consensus-partition-list-9

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

collect_classes(res_list, k = 7)

plot of chunk tab-collect-classes-from-consensus-partition-list-6

collect_classes(res_list, k = 8)

plot of chunk tab-collect-classes-from-consensus-partition-list-7

collect_classes(res_list, k = 9)

plot of chunk tab-collect-classes-from-consensus-partition-list-8

collect_classes(res_list, k = 10)

plot of chunk tab-collect-classes-from-consensus-partition-list-9

Top rows overlap

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 13)

plot of chunk tab-top-rows-heatmap-1

Results for each method


ATC:skmeans

The object with results only for a single top-value method and a single partitioning method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6, 7, 8, 9, 10.
#>   On a matrix with 13 rows and 2737 columns.
#>   Top rows (13) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 450 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "predict_classes"         "rownames"                "select_partition_number"
#> [28] "show"                    "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of subgroups) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, higher 1-PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>     k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2   2 0.679           0.858       0.937         0.4626 0.537   0.537
#> 3   3 0.762           0.851       0.931         0.3990 0.732   0.534
#> 4   4 0.687           0.732       0.834         0.0961 0.898   0.720
#> 5   5 0.768           0.783       0.893         0.0656 0.932   0.768
#> 6   6 0.760           0.707       0.839         0.0399 0.944   0.777
#> 7   7 0.759           0.655       0.788         0.0271 0.940   0.737
#> 8   8 0.770           0.661       0.784         0.0209 0.963   0.811
#> 9   9 0.766           0.608       0.775         0.0193 0.968   0.823
#> 10 10 0.778           0.565       0.746         0.0185 0.972   0.828

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following is the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall subgroup label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette   p1   p2
#> SP1003       2   0.000    0.90780 0.00 1.00
#> SP10084      2   0.000    0.90780 0.00 1.00
#> SP1009       1   0.904    0.55054 0.68 0.32
#> SP10150      2   0.327    0.88640 0.06 0.94
#> SP101515     2   0.855    0.62118 0.28 0.72
#> SP101519     2   0.000    0.90780 0.00 1.00
#> SP101521     2   0.000    0.90780 0.00 1.00
#> SP101523     1   0.827    0.66400 0.74 0.26
#> SP101526     2   0.000    0.90780 0.00 1.00
#> SP101528     2   0.529    0.83826 0.12 0.88
#> SP101532     1   0.680    0.78093 0.82 0.18
#> SP101536     2   0.242    0.89595 0.04 0.96
#> SP101540     2   0.000    0.90780 0.00 1.00
#> SP101544     2   0.000    0.90780 0.00 1.00
#> SP101548     2   0.999    0.09622 0.48 0.52
#> SP101552     2   0.000    0.90780 0.00 1.00
#> SP101558     1   0.760    0.72593 0.78 0.22
#> SP101564     2   0.000    0.90780 0.00 1.00
#> SP101572     2   0.141    0.90316 0.02 0.98
#> SP101576     2   0.000    0.90780 0.00 1.00
#> SP101580     2   0.000    0.90780 0.00 1.00
#> SP101584     2   0.000    0.90780 0.00 1.00
#> SP101588     2   0.000    0.90780 0.00 1.00
#> SP101592     2   0.000    0.90780 0.00 1.00
#> SP101596     2   0.000    0.90780 0.00 1.00
#> SP101600     1   0.795    0.69454 0.76 0.24
#> SP101604     1   0.827    0.66257 0.74 0.26
#> SP101610     1   0.990    0.23082 0.56 0.44
#> SP101616     2   0.000    0.90780 0.00 1.00
#> SP101622     2   0.000    0.90780 0.00 1.00
#> SP101628     2   0.000    0.90780 0.00 1.00
#> SP101634     1   0.943    0.45989 0.64 0.36
#> SP101642     2   0.000    0.90780 0.00 1.00
#> SP101648     1   0.999    0.09111 0.52 0.48
#> SP101654     2   0.000    0.90780 0.00 1.00
#> SP101658     1   0.000    0.94439 1.00 0.00
#> SP101662     1   0.469    0.86690 0.90 0.10
#> SP101666     1   0.760    0.72594 0.78 0.22
#> SP101670     2   0.000    0.90780 0.00 1.00
#> SP101674     2   0.000    0.90780 0.00 1.00
#> SP101678     2   0.000    0.90780 0.00 1.00
#> SP101682     2   0.000    0.90780 0.00 1.00
#> SP101686     2   0.000    0.90780 0.00 1.00
#> SP101690     2   0.000    0.90780 0.00 1.00
#> SP101694     2   0.141    0.90316 0.02 0.98
#> SP101700     2   0.141    0.90171 0.02 0.98
#> SP101708     1   0.981    0.29632 0.58 0.42
#> SP101716     2   0.000    0.90780 0.00 1.00
#> SP101724     2   0.000    0.90780 0.00 1.00
#> SP101732     2   0.000    0.90780 0.00 1.00
#> SP101740     2   0.000    0.90780 0.00 1.00
#> SP101795     2   0.000    0.90780 0.00 1.00
#> SP101845     2   0.000    0.90780 0.00 1.00
#> SP101881     1   1.000    0.00885 0.50 0.50
#> SP101891     2   0.000    0.90780 0.00 1.00
#> SP101921     2   0.000    0.90780 0.00 1.00
#> SP101931     2   0.000    0.90780 0.00 1.00
#> SP102015     2   0.000    0.90780 0.00 1.00
#> SP102035     2   0.999    0.07677 0.48 0.52
#> SP102045     2   0.141    0.90316 0.02 0.98
#> SP102055     1   0.722    0.75321 0.80 0.20
#> SP102064     1   0.402    0.88371 0.92 0.08
#> SP102074     2   0.000    0.90780 0.00 1.00
#> SP102084     1   0.971    0.35326 0.60 0.40
#> SP102090     2   0.000    0.90780 0.00 1.00
#> SP102096     2   0.000    0.90780 0.00 1.00
#> SP102103     2   0.000    0.90780 0.00 1.00
#> SP102113     2   0.999    0.06798 0.48 0.52
#> SP102123     2   0.000    0.90780 0.00 1.00
#> SP102133     2   0.000    0.90780 0.00 1.00
#> SP102143     2   0.795    0.69735 0.24 0.76
#> SP102161     2   0.402    0.87577 0.08 0.92
#> SP102168     2   0.680    0.77482 0.18 0.82
#> SP102174     2   0.000    0.90780 0.00 1.00
#> SP102187     1   0.680    0.78120 0.82 0.18
#> SP102485     1   0.000    0.94439 1.00 0.00
#> SP102489     1   0.000    0.94439 1.00 0.00
#> SP102499     1   0.000    0.94439 1.00 0.00
#> SP102507     1   0.402    0.88371 0.92 0.08
#> SP102511     1   0.000    0.94439 1.00 0.00
#> SP102517     1   0.999   -0.06455 0.52 0.48
#> SP102523     1   0.958    0.31009 0.62 0.38
#> SP102529     2   0.999    0.20520 0.48 0.52
#> SP102537     1   0.000    0.94439 1.00 0.00
#> SP102541     2   0.958    0.48163 0.38 0.62
#> SP102547     1   0.000    0.94439 1.00 0.00
#> SP102557     1   0.000    0.94439 1.00 0.00
#> SP102561     1   0.000    0.94439 1.00 0.00
#> SP102567     1   0.990    0.09604 0.56 0.44
#> SP102573     1   0.584    0.80112 0.86 0.14
#> SP102581     1   0.000    0.94439 1.00 0.00
#> SP102591     1   0.000    0.94439 1.00 0.00
#> SP102597     1   0.000    0.94439 1.00 0.00
#> SP102605     1   0.000    0.94439 1.00 0.00
#> SP102611     2   0.242    0.89595 0.04 0.96
#> SP102617     1   0.000    0.94439 1.00 0.00
#> SP102620     1   0.141    0.93033 0.98 0.02
#> SP102622     2   0.958    0.47831 0.38 0.62
#> SP102626     1   0.141    0.93033 0.98 0.02
#> SP102630     1   0.999    0.08349 0.52 0.48
#> SP102633     1   0.000    0.94439 1.00 0.00
#> SP102647     1   0.469    0.86690 0.90 0.10
#> SP102652     2   0.584    0.82076 0.14 0.86
#> SP102690     1   0.000    0.94439 1.00 0.00
#> SP102716     1   0.000    0.94439 1.00 0.00
#> SP102718     1   0.000    0.94439 1.00 0.00
#> SP102733     1   0.000    0.94439 1.00 0.00
#> SP102741     1   0.000    0.94439 1.00 0.00
#> SP102747     1   0.000    0.94439 1.00 0.00
#> SP102755     1   0.000    0.94439 1.00 0.00
#> SP102759     1   0.000    0.94439 1.00 0.00
#> SP102783     1   0.000    0.94439 1.00 0.00
#> SP102804     1   0.000    0.94439 1.00 0.00
#> SP102816     1   0.000    0.94439 1.00 0.00
#> SP102827     2   1.000    0.13899 0.50 0.50
#> SP102839     1   0.000    0.94439 1.00 0.00
#> SP102873     1   0.000    0.94439 1.00 0.00
#> SP102881     1   0.000    0.94439 1.00 0.00
#> SP102897     1   0.000    0.94439 1.00 0.00
#> SP102913     2   0.529    0.85049 0.12 0.88
#> SP102921     1   0.000    0.94439 1.00 0.00
#> SP102929     1   0.000    0.94439 1.00 0.00
#> SP102945     1   0.000    0.94439 1.00 0.00
#> SP102957     1   0.000    0.94439 1.00 0.00
#> SP102965     1   0.000    0.94439 1.00 0.00
#> SP102973     1   0.000    0.94439 1.00 0.00
#> SP102989     1   0.000    0.94439 1.00 0.00
#> SP103005     2   0.855    0.66635 0.28 0.72
#> SP103021     1   0.971    0.23871 0.60 0.40
#> SP103037     1   0.000    0.94439 1.00 0.00
#> SP103045     2   0.795    0.72186 0.24 0.76
#> SP103057     1   0.000    0.94439 1.00 0.00
#> SP103065     1   0.000    0.94439 1.00 0.00
#> SP103080     1   0.795    0.66806 0.76 0.24
#> SP103100     1   0.000    0.94439 1.00 0.00
#> SP103128     1   0.000    0.94439 1.00 0.00
#> SP103140     1   0.000    0.94439 1.00 0.00
#> SP103156     1   0.000    0.94439 1.00 0.00
#> SP103197     1   0.000    0.94439 1.00 0.00
#> SP103213     1   0.000    0.94439 1.00 0.00
#> SP103221     1   0.000    0.94439 1.00 0.00
#> SP103233     1   0.000    0.94439 1.00 0.00
#> SP103245     1   0.000    0.94439 1.00 0.00
#> SP103261     1   0.000    0.94439 1.00 0.00
#> SP103288     1   0.000    0.94439 1.00 0.00
#> SP103300     1   0.000    0.94439 1.00 0.00
#> SP103340     1   0.000    0.94439 1.00 0.00
#> SP103396     1   0.000    0.94439 1.00 0.00
#> SP103408     1   0.000    0.94439 1.00 0.00
#> SP103416     1   0.242    0.91169 0.96 0.04
#> SP103428     1   0.000    0.94439 1.00 0.00
#> SP103436     1   0.000    0.94439 1.00 0.00
#> SP103444     1   0.000    0.94439 1.00 0.00
#> SP103455     2   0.760    0.73804 0.22 0.78
#> SP103467     1   0.000    0.94439 1.00 0.00
#> SP103483     1   0.000    0.94439 1.00 0.00
#> SP103507     1   0.000    0.94439 1.00 0.00
#> SP103515     1   0.000    0.94439 1.00 0.00
#> SP103523     1   0.000    0.94439 1.00 0.00
#> SP103535     2   0.855    0.66598 0.28 0.72
#> SP103547     1   0.000    0.94439 1.00 0.00
#> SP103555     1   0.000    0.94439 1.00 0.00
#> SP103575     2   0.402    0.87577 0.08 0.92
#> SP103595     1   1.000   -0.13730 0.50 0.50
#> SP103603     1   1.000   -0.13859 0.50 0.50
#> SP103619     1   0.000    0.94439 1.00 0.00
#> SP103673     1   0.000    0.94439 1.00 0.00
#> SP103679     1   0.000    0.94439 1.00 0.00
#> SP103685     1   0.000    0.94439 1.00 0.00
#> SP103694     1   0.000    0.94439 1.00 0.00
#> SP103706     1   0.000    0.94439 1.00 0.00
#> SP103715     1   0.000    0.94439 1.00 0.00
#> SP103730     1   0.000    0.94439 1.00 0.00
#> SP103742     1   0.000    0.94439 1.00 0.00
#> SP103826     1   0.000    0.94439 1.00 0.00
#> SP103844     1   0.000    0.94439 1.00 0.00
#> SP103856     1   0.000    0.94439 1.00 0.00
#> SP103866     1   0.000    0.94439 1.00 0.00
#> SP103894     2   0.402    0.87767 0.08 0.92
#> SP104056     1   0.000    0.94439 1.00 0.00
#> SP104330     1   0.000    0.94439 1.00 0.00
#> SP104530     2   0.000    0.90780 0.00 1.00
#> SP10470      2   0.000    0.90780 0.00 1.00
#> SP104984     1   0.584    0.81532 0.86 0.14
#> SP105006     2   0.402    0.87577 0.08 0.92
#> SP105018     2   0.000    0.90780 0.00 1.00
#> SP105086     2   0.529    0.84118 0.12 0.88
#> SP105159     1   0.000    0.94439 1.00 0.00
#> SP105213     1   0.000    0.94439 1.00 0.00
#> SP105253     2   0.000    0.90780 0.00 1.00
#> SP105261     2   0.000    0.90780 0.00 1.00
#> SP105375     2   0.000    0.90780 0.00 1.00
#> SP105425     1   0.827    0.66293 0.74 0.26
#> SP105577     1   0.904    0.54874 0.68 0.32
#> SP10563      2   0.000    0.90780 0.00 1.00
#> SP105673     2   0.999    0.08361 0.48 0.52
#> SP105708     1   0.000    0.94439 1.00 0.00
#> SP105759     1   0.000    0.94439 1.00 0.00
#> SP105807     1   0.000    0.94439 1.00 0.00
#> SP1059       2   0.000    0.90780 0.00 1.00
#>  [ reached 'max' / getOption("max.print") -- omitted 2537 rows ]

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette   p1   p2   p3
#> SP1003       2  0.0000     0.9233 0.00 1.00 0.00
#> SP10084      2  0.0000     0.9233 0.00 1.00 0.00
#> SP1009       3  0.0000     0.8669 0.00 0.00 1.00
#> SP10150      2  0.0892     0.9147 0.02 0.98 0.00
#> SP101515     3  0.0000     0.8669 0.00 0.00 1.00
#> SP101519     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101521     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101523     3  0.0892     0.8683 0.02 0.00 0.98
#> SP101526     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101528     3  0.0000     0.8669 0.00 0.00 1.00
#> SP101532     3  0.0892     0.8678 0.02 0.00 0.98
#> SP101536     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101540     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101544     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101548     3  0.0000     0.8669 0.00 0.00 1.00
#> SP101552     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101558     3  0.3340     0.8339 0.12 0.00 0.88
#> SP101564     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101572     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101576     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101580     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101584     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101588     2  0.1529     0.8930 0.00 0.96 0.04
#> SP101592     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101596     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101600     3  0.1529     0.8663 0.04 0.00 0.96
#> SP101604     3  0.0000     0.8669 0.00 0.00 1.00
#> SP101610     3  0.0000     0.8669 0.00 0.00 1.00
#> SP101616     2  0.4291     0.7345 0.00 0.82 0.18
#> SP101622     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101628     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101634     3  0.1529     0.8654 0.04 0.00 0.96
#> SP101642     2  0.0892     0.9097 0.00 0.98 0.02
#> SP101648     3  0.0000     0.8669 0.00 0.00 1.00
#> SP101654     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101658     3  0.5948     0.5244 0.36 0.00 0.64
#> SP101662     3  0.0000     0.8669 0.00 0.00 1.00
#> SP101666     3  0.0000     0.8669 0.00 0.00 1.00
#> SP101670     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101674     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101678     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101682     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101686     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101690     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101694     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101700     3  0.2959     0.8175 0.00 0.10 0.90
#> SP101708     3  0.0000     0.8669 0.00 0.00 1.00
#> SP101716     2  0.6244     0.1654 0.00 0.56 0.44
#> SP101724     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101732     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101740     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101795     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101845     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101881     3  0.0000     0.8669 0.00 0.00 1.00
#> SP101891     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101921     2  0.0000     0.9233 0.00 1.00 0.00
#> SP101931     2  0.0000     0.9233 0.00 1.00 0.00
#> SP102015     2  0.0000     0.9233 0.00 1.00 0.00
#> SP102035     3  0.0000     0.8669 0.00 0.00 1.00
#> SP102045     2  0.0000     0.9233 0.00 1.00 0.00
#> SP102055     3  0.0000     0.8669 0.00 0.00 1.00
#> SP102064     3  0.0000     0.8669 0.00 0.00 1.00
#> SP102074     2  0.0000     0.9233 0.00 1.00 0.00
#> SP102084     3  0.0892     0.8683 0.02 0.00 0.98
#> SP102090     2  0.4555     0.6997 0.00 0.80 0.20
#> SP102096     2  0.0000     0.9233 0.00 1.00 0.00
#> SP102103     2  0.0000     0.9233 0.00 1.00 0.00
#> SP102113     3  0.0000     0.8669 0.00 0.00 1.00
#> SP102123     2  0.0000     0.9233 0.00 1.00 0.00
#> SP102133     2  0.0000     0.9233 0.00 1.00 0.00
#> SP102143     3  0.0000     0.8669 0.00 0.00 1.00
#> SP102161     2  0.0892     0.9147 0.02 0.98 0.00
#> SP102168     3  0.7395     0.3871 0.04 0.38 0.58
#> SP102174     2  0.0000     0.9233 0.00 1.00 0.00
#> SP102187     3  0.2537     0.8543 0.08 0.00 0.92
#> SP102485     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102489     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102499     1  0.2537     0.8799 0.92 0.00 0.08
#> SP102507     3  0.2537     0.8603 0.08 0.00 0.92
#> SP102511     1  0.2959     0.8617 0.90 0.00 0.10
#> SP102517     2  0.6045     0.4516 0.38 0.62 0.00
#> SP102523     1  0.6280     0.0653 0.54 0.46 0.00
#> SP102529     2  0.5948     0.4959 0.36 0.64 0.00
#> SP102537     1  0.6309    -0.1001 0.50 0.00 0.50
#> SP102541     2  0.5560     0.6149 0.30 0.70 0.00
#> SP102547     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102557     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102561     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102567     2  0.6302     0.1721 0.48 0.52 0.00
#> SP102573     1  0.3340     0.8281 0.88 0.12 0.00
#> SP102581     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102591     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102597     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102605     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102611     2  0.0000     0.9233 0.00 1.00 0.00
#> SP102617     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102620     3  0.1529     0.8664 0.04 0.00 0.96
#> SP102622     2  0.5216     0.6783 0.26 0.74 0.00
#> SP102626     3  0.1529     0.8664 0.04 0.00 0.96
#> SP102630     3  0.0000     0.8669 0.00 0.00 1.00
#> SP102633     3  0.4796     0.7493 0.22 0.00 0.78
#> SP102647     3  0.0000     0.8669 0.00 0.00 1.00
#> SP102652     3  0.0000     0.8669 0.00 0.00 1.00
#> SP102690     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102716     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102718     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102733     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102741     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102747     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102755     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102759     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102783     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102804     3  0.5560     0.6264 0.30 0.00 0.70
#> SP102816     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102827     2  0.5835     0.5400 0.34 0.66 0.00
#> SP102839     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102873     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102881     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102897     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102913     2  0.3340     0.8373 0.12 0.88 0.00
#> SP102921     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102929     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102945     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102957     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102965     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102973     1  0.0000     0.9561 1.00 0.00 0.00
#> SP102989     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103005     2  0.5216     0.6792 0.26 0.74 0.00
#> SP103021     1  0.6192     0.2012 0.58 0.42 0.00
#> SP103037     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103045     2  0.4796     0.7272 0.22 0.78 0.00
#> SP103057     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103065     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103080     1  0.9083     0.2043 0.52 0.16 0.32
#> SP103100     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103128     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103140     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103156     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103197     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103213     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103221     3  0.6280     0.2941 0.46 0.00 0.54
#> SP103233     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103245     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103261     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103288     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103300     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103340     1  0.4002     0.7777 0.84 0.00 0.16
#> SP103396     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103408     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103416     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103428     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103436     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103444     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103455     3  0.6407     0.7275 0.08 0.16 0.76
#> SP103467     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103483     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103507     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103515     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103523     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103535     2  0.2537     0.8749 0.08 0.92 0.00
#> SP103547     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103555     1  0.0000     0.9561 1.00 0.00 0.00
#> SP103575     2  0.2066     0.8908 0.06 0.94 0.00
#> SP103595     2  0.6302     0.1721 0.48 0.52 0.00
#> SP103603     2  0.6280     0.2365 0.46 0.54 0.00
#> SP103619     1  0.0000     0.9561 1.00 0.00 0.00
#>  [ reached 'max' / getOption("max.print") -- omitted 2571 rows ]

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette   p1   p2   p3   p4
#> SP1003       2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP10084      2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP1009       4  0.3975     0.6823 0.00 0.00 0.24 0.76
#> SP10150      2  0.3606     0.7611 0.02 0.84 0.00 0.14
#> SP101515     3  0.4948     0.1715 0.00 0.00 0.56 0.44
#> SP101519     2  0.3037     0.7594 0.00 0.88 0.02 0.10
#> SP101521     2  0.6976     0.7339 0.00 0.58 0.18 0.24
#> SP101523     3  0.3335     0.6568 0.02 0.00 0.86 0.12
#> SP101526     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP101528     4  0.3975     0.6823 0.00 0.00 0.24 0.76
#> SP101532     3  0.5062     0.4786 0.02 0.00 0.68 0.30
#> SP101536     2  0.3821     0.7671 0.00 0.84 0.04 0.12
#> SP101540     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP101544     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP101548     4  0.3975     0.6823 0.00 0.00 0.24 0.76
#> SP101552     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP101558     3  0.3611     0.6585 0.06 0.00 0.86 0.08
#> SP101564     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP101572     2  0.5594     0.7734 0.00 0.72 0.10 0.18
#> SP101576     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP101580     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP101584     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP101588     2  0.5657     0.7719 0.00 0.72 0.12 0.16
#> SP101592     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP101596     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP101600     3  0.3611     0.6550 0.08 0.00 0.86 0.06
#> SP101604     4  0.4277     0.6311 0.00 0.00 0.28 0.72
#> SP101610     3  0.4624     0.4147 0.00 0.00 0.66 0.34
#> SP101616     3  0.7004     0.0783 0.00 0.20 0.58 0.22
#> SP101622     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP101628     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP101634     3  0.3335     0.6564 0.02 0.00 0.86 0.12
#> SP101642     2  0.7653     0.5767 0.00 0.46 0.30 0.24
#> SP101648     3  0.2921     0.6463 0.00 0.00 0.86 0.14
#> SP101654     2  0.7583     0.6277 0.00 0.48 0.28 0.24
#> SP101658     3  0.6595     0.5020 0.24 0.04 0.66 0.06
#> SP101662     4  0.4907     0.3437 0.00 0.00 0.42 0.58
#> SP101666     3  0.4522     0.4534 0.00 0.00 0.68 0.32
#> SP101670     2  0.5383     0.7661 0.00 0.74 0.10 0.16
#> SP101674     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP101678     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP101682     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP101686     2  0.5594     0.7728 0.00 0.72 0.10 0.18
#> SP101690     2  0.7394     0.6770 0.00 0.52 0.24 0.24
#> SP101694     2  0.4949     0.7727 0.00 0.76 0.06 0.18
#> SP101700     3  0.3935     0.6462 0.00 0.10 0.84 0.06
#> SP101708     3  0.2921     0.6463 0.00 0.00 0.86 0.14
#> SP101716     3  0.6976     0.0923 0.00 0.18 0.58 0.24
#> SP101724     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP101732     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP101740     2  0.7135     0.7115 0.00 0.56 0.20 0.24
#> SP101795     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP101845     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP101881     3  0.2921     0.6463 0.00 0.00 0.86 0.14
#> SP101891     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP101921     2  0.0000     0.7260 0.00 1.00 0.00 0.00
#> SP101931     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP102015     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP102035     3  0.4522     0.4534 0.00 0.00 0.68 0.32
#> SP102045     2  0.6104     0.7720 0.00 0.68 0.14 0.18
#> SP102055     3  0.4855     0.2924 0.00 0.00 0.60 0.40
#> SP102064     3  0.4522     0.4534 0.00 0.00 0.68 0.32
#> SP102074     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP102084     3  0.3037     0.6657 0.02 0.00 0.88 0.10
#> SP102090     3  0.6594     0.2038 0.00 0.14 0.62 0.24
#> SP102096     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP102103     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP102113     3  0.2921     0.6463 0.00 0.00 0.86 0.14
#> SP102123     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP102133     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP102143     3  0.4855     0.2681 0.00 0.00 0.60 0.40
#> SP102161     2  0.0707     0.7215 0.02 0.98 0.00 0.00
#> SP102168     3  0.3853     0.5545 0.00 0.02 0.82 0.16
#> SP102174     2  0.6594     0.7638 0.00 0.62 0.14 0.24
#> SP102187     3  0.3611     0.6585 0.06 0.00 0.86 0.08
#> SP102485     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102489     1  0.3172     0.7808 0.84 0.16 0.00 0.00
#> SP102499     1  0.2345     0.8497 0.90 0.00 0.10 0.00
#> SP102507     4  0.5486     0.7088 0.08 0.00 0.20 0.72
#> SP102511     1  0.3037     0.8325 0.88 0.02 0.10 0.00
#> SP102517     2  0.4134     0.5032 0.26 0.74 0.00 0.00
#> SP102523     2  0.4624     0.3993 0.34 0.66 0.00 0.00
#> SP102529     2  0.3801     0.5373 0.22 0.78 0.00 0.00
#> SP102537     3  0.5636     0.4986 0.26 0.00 0.68 0.06
#> SP102541     2  0.3801     0.5373 0.22 0.78 0.00 0.00
#> SP102547     1  0.3172     0.7808 0.84 0.16 0.00 0.00
#> SP102557     1  0.2706     0.8578 0.90 0.02 0.08 0.00
#> SP102561     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102567     2  0.3975     0.5120 0.24 0.76 0.00 0.00
#> SP102573     1  0.4994     0.1609 0.52 0.48 0.00 0.00
#> SP102581     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102591     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102597     1  0.2011     0.8740 0.92 0.00 0.08 0.00
#> SP102605     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102611     2  0.3198     0.7566 0.00 0.88 0.08 0.04
#> SP102617     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102620     4  0.4755     0.7227 0.04 0.00 0.20 0.76
#> SP102622     2  0.2011     0.6906 0.08 0.92 0.00 0.00
#> SP102626     4  0.4755     0.7227 0.04 0.00 0.20 0.76
#> SP102630     4  0.4134     0.6592 0.00 0.00 0.26 0.74
#> SP102633     4  0.5077     0.7421 0.16 0.00 0.08 0.76
#> SP102647     4  0.3975     0.6823 0.00 0.00 0.24 0.76
#> SP102652     4  0.5077     0.6817 0.00 0.08 0.16 0.76
#> SP102690     1  0.0707     0.9362 0.98 0.00 0.00 0.02
#> SP102716     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102718     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102733     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102741     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102747     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102755     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102759     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102783     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102804     4  0.4755     0.7305 0.20 0.00 0.04 0.76
#> SP102816     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102827     2  0.4406     0.4573 0.30 0.70 0.00 0.00
#> SP102839     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102873     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102881     1  0.0707     0.9362 0.98 0.00 0.00 0.02
#> SP102897     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102913     2  0.2011     0.6893 0.08 0.92 0.00 0.00
#> SP102921     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102929     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102945     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102957     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102965     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102973     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP102989     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP103005     2  0.2647     0.6518 0.12 0.88 0.00 0.00
#> SP103021     2  0.4406     0.4276 0.30 0.70 0.00 0.00
#> SP103037     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP103045     2  0.2345     0.6715 0.10 0.90 0.00 0.00
#> SP103057     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP103065     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP103080     4  0.7832     0.2704 0.26 0.36 0.00 0.38
#> SP103100     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP103128     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP103140     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP103156     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP103197     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP103213     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#> SP103221     3  0.4994     0.1912 0.48 0.00 0.52 0.00
#> SP103233     1  0.0000     0.9544 1.00 0.00 0.00 0.00
#>  [ reached 'max' / getOption("max.print") -- omitted 2595 rows ]

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette   p1   p2   p3   p4   p5
#> SP1003       2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP10084      2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP1009       4  0.1043     0.7853 0.00 0.00 0.04 0.96 0.00
#> SP10150      2  0.4287     0.2284 0.00 0.54 0.00 0.00 0.46
#> SP101515     3  0.4262     0.2620 0.00 0.00 0.56 0.44 0.00
#> SP101519     5  0.4060     0.3771 0.00 0.36 0.00 0.00 0.64
#> SP101521     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP101523     3  0.0609     0.7715 0.02 0.00 0.98 0.00 0.00
#> SP101526     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP101528     4  0.3109     0.6982 0.00 0.00 0.20 0.80 0.00
#> SP101532     3  0.4675     0.5364 0.02 0.00 0.60 0.38 0.00
#> SP101536     2  0.4182     0.4064 0.00 0.60 0.00 0.00 0.40
#> SP101540     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP101544     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP101548     4  0.0609     0.7944 0.00 0.00 0.02 0.98 0.00
#> SP101552     2  0.0609     0.8695 0.00 0.98 0.00 0.00 0.02
#> SP101558     3  0.0609     0.7715 0.02 0.00 0.98 0.00 0.00
#> SP101564     2  0.0609     0.8693 0.00 0.98 0.00 0.00 0.02
#> SP101572     2  0.2929     0.7559 0.00 0.82 0.00 0.00 0.18
#> SP101576     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP101580     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP101584     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP101588     2  0.4060     0.4593 0.00 0.64 0.00 0.00 0.36
#> SP101592     2  0.0609     0.8693 0.00 0.98 0.00 0.00 0.02
#> SP101596     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP101600     3  0.0609     0.7715 0.02 0.00 0.98 0.00 0.00
#> SP101604     4  0.2516     0.7315 0.00 0.00 0.14 0.86 0.00
#> SP101610     3  0.3561     0.6052 0.00 0.00 0.74 0.26 0.00
#> SP101616     2  0.3983     0.5096 0.00 0.66 0.34 0.00 0.00
#> SP101622     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP101628     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP101634     3  0.1732     0.7610 0.00 0.00 0.92 0.08 0.00
#> SP101642     2  0.1732     0.8318 0.00 0.92 0.08 0.00 0.00
#> SP101648     3  0.0609     0.7690 0.00 0.00 0.98 0.02 0.00
#> SP101654     2  0.0609     0.8681 0.00 0.98 0.02 0.00 0.00
#> SP101658     3  0.6484     0.5681 0.22 0.00 0.60 0.14 0.04
#> SP101662     4  0.4227     0.0702 0.00 0.00 0.42 0.58 0.00
#> SP101666     3  0.3983     0.5341 0.00 0.00 0.66 0.34 0.00
#> SP101670     2  0.4307     0.0559 0.00 0.50 0.00 0.00 0.50
#> SP101674     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP101678     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP101682     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP101686     2  0.3561     0.6449 0.00 0.74 0.00 0.00 0.26
#> SP101690     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP101694     2  0.3895     0.5586 0.00 0.68 0.00 0.00 0.32
#> SP101700     3  0.3291     0.7287 0.00 0.00 0.84 0.04 0.12
#> SP101708     3  0.0609     0.7690 0.00 0.00 0.98 0.02 0.00
#> SP101716     2  0.4060     0.4773 0.00 0.64 0.36 0.00 0.00
#> SP101724     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP101732     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP101740     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP101795     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP101845     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP101881     3  0.0609     0.7690 0.00 0.00 0.98 0.02 0.00
#> SP101891     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP101921     5  0.0000     0.8625 0.00 0.00 0.00 0.00 1.00
#> SP101931     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP102015     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP102035     3  0.2280     0.7348 0.00 0.00 0.88 0.12 0.00
#> SP102045     2  0.2280     0.8116 0.00 0.88 0.00 0.00 0.12
#> SP102055     3  0.4126     0.4189 0.00 0.00 0.62 0.38 0.00
#> SP102064     3  0.3561     0.6052 0.00 0.00 0.74 0.26 0.00
#> SP102074     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP102084     3  0.0609     0.7690 0.00 0.00 0.98 0.02 0.00
#> SP102090     2  0.3274     0.7053 0.00 0.78 0.22 0.00 0.00
#> SP102096     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP102103     2  0.2280     0.8095 0.00 0.88 0.00 0.00 0.12
#> SP102113     3  0.0609     0.7690 0.00 0.00 0.98 0.02 0.00
#> SP102123     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP102133     2  0.2516     0.7931 0.00 0.86 0.00 0.00 0.14
#> SP102143     3  0.4126     0.4778 0.00 0.00 0.62 0.38 0.00
#> SP102161     5  0.0000     0.8625 0.00 0.00 0.00 0.00 1.00
#> SP102168     3  0.3109     0.6372 0.00 0.20 0.80 0.00 0.00
#> SP102174     2  0.0000     0.8742 0.00 1.00 0.00 0.00 0.00
#> SP102187     3  0.0609     0.7715 0.02 0.00 0.98 0.00 0.00
#> SP102485     1  0.0000     0.9524 1.00 0.00 0.00 0.00 0.00
#> SP102489     1  0.3895     0.5339 0.68 0.00 0.00 0.00 0.32
#> SP102499     1  0.4458     0.6878 0.76 0.00 0.12 0.12 0.00
#> SP102507     4  0.0609     0.7974 0.02 0.00 0.00 0.98 0.00
#> SP102511     1  0.5032     0.6630 0.74 0.00 0.12 0.12 0.02
#> SP102517     5  0.2929     0.7347 0.18 0.00 0.00 0.00 0.82
#> SP102523     5  0.3274     0.6643 0.22 0.00 0.00 0.00 0.78
#> SP102529     5  0.1410     0.8548 0.06 0.00 0.00 0.00 0.94
#> SP102537     3  0.5599     0.5549 0.26 0.00 0.62 0.12 0.00
#> SP102541     5  0.0000     0.8625 0.00 0.00 0.00 0.00 1.00
#> SP102547     1  0.4840     0.4765 0.64 0.00 0.00 0.04 0.32
#> SP102557     1  0.4794     0.6938 0.76 0.00 0.10 0.12 0.02
#> SP102561     1  0.0000     0.9524 1.00 0.00 0.00 0.00 0.00
#> SP102567     5  0.1410     0.8548 0.06 0.00 0.00 0.00 0.94
#> SP102573     5  0.3274     0.6643 0.22 0.00 0.00 0.00 0.78
#> SP102581     1  0.0000     0.9524 1.00 0.00 0.00 0.00 0.00
#> SP102591     1  0.0000     0.9524 1.00 0.00 0.00 0.00 0.00
#> SP102597     1  0.4458     0.6878 0.76 0.00 0.12 0.12 0.00
#> SP102605     1  0.0000     0.9524 1.00 0.00 0.00 0.00 0.00
#> SP102611     5  0.3684     0.5782 0.00 0.28 0.00 0.00 0.72
#> SP102617     1  0.0000     0.9524 1.00 0.00 0.00 0.00 0.00
#> SP102620     4  0.0000     0.7986 0.00 0.00 0.00 1.00 0.00
#> SP102622     5  0.1410     0.8548 0.06 0.00 0.00 0.00 0.94
#> SP102626     4  0.0000     0.7986 0.00 0.00 0.00 1.00 0.00
#> SP102630     4  0.2516     0.7219 0.00 0.00 0.14 0.86 0.00
#> SP102633     4  0.1043     0.8048 0.04 0.00 0.00 0.96 0.00
#> SP102647     4  0.0000     0.7986 0.00 0.00 0.00 1.00 0.00
#> SP102652     4  0.3513     0.7064 0.00 0.00 0.02 0.80 0.18
#> SP102690     1  0.0609     0.9351 0.98 0.00 0.00 0.02 0.00
#> SP102716     1  0.0000     0.9524 1.00 0.00 0.00 0.00 0.00
#> SP102718     1  0.0000     0.9524 1.00 0.00 0.00 0.00 0.00
#> SP102733     1  0.0000     0.9524 1.00 0.00 0.00 0.00 0.00
#> SP102741     1  0.1043     0.9189 0.96 0.00 0.00 0.04 0.00
#> SP102747     1  0.0000     0.9524 1.00 0.00 0.00 0.00 0.00
#> SP102755     1  0.0000     0.9524 1.00 0.00 0.00 0.00 0.00
#> SP102759     1  0.0000     0.9524 1.00 0.00 0.00 0.00 0.00
#> SP102783     1  0.0000     0.9524 1.00 0.00 0.00 0.00 0.00
#> SP102804     4  0.3109     0.7488 0.20 0.00 0.00 0.80 0.00
#> SP102816     1  0.0000     0.9524 1.00 0.00 0.00 0.00 0.00
#> SP102827     5  0.3684     0.6042 0.28 0.00 0.00 0.00 0.72
#> SP102839     1  0.0000     0.9524 1.00 0.00 0.00 0.00 0.00
#> SP102873     1  0.0000     0.9524 1.00 0.00 0.00 0.00 0.00
#> SP102881     1  0.1043     0.9183 0.96 0.00 0.00 0.04 0.00
#> SP102897     1  0.1043     0.9182 0.96 0.00 0.00 0.04 0.00
#> SP102913     5  0.0000     0.8625 0.00 0.00 0.00 0.00 1.00
#> SP102921     1  0.0000     0.9524 1.00 0.00 0.00 0.00 0.00
#> SP102929     1  0.0000     0.9524 1.00 0.00 0.00 0.00 0.00
#> SP102945     1  0.0000     0.9524 1.00 0.00 0.00 0.00 0.00
#> SP102957     1  0.0000     0.9524 1.00 0.00 0.00 0.00 0.00
#> SP102965     1  0.0000     0.9524 1.00 0.00 0.00 0.00 0.00
#>  [ reached 'max' / getOption("max.print") -- omitted 2612 rows ]

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette   p1   p2   p3   p4   p5   p6
#> SP1003       2  0.0937     0.8667 0.00 0.96 0.00 0.00 0.00 0.04
#> SP10084      2  0.0937     0.8667 0.00 0.96 0.00 0.00 0.00 0.04
#> SP1009       4  0.0000     0.6108 0.00 0.00 0.00 1.00 0.00 0.00
#> SP10150      2  0.4282     0.3508 0.00 0.56 0.00 0.00 0.42 0.02
#> SP101515     3  0.5012     0.5644 0.00 0.00 0.60 0.30 0.00 0.10
#> SP101519     5  0.5260     0.1120 0.00 0.44 0.02 0.02 0.50 0.02
#> SP101521     2  0.0000     0.8689 0.00 1.00 0.00 0.00 0.00 0.00
#> SP101523     3  0.2094     0.7372 0.02 0.00 0.90 0.00 0.00 0.08
#> SP101526     2  0.0937     0.8667 0.00 0.96 0.00 0.00 0.00 0.04
#> SP101528     4  0.5747     0.5461 0.00 0.00 0.20 0.50 0.00 0.30
#> SP101532     4  0.5992    -0.1649 0.02 0.00 0.14 0.48 0.00 0.36
#> SP101536     2  0.4310     0.2816 0.00 0.54 0.00 0.00 0.44 0.02
#> SP101540     2  0.0000     0.8689 0.00 1.00 0.00 0.00 0.00 0.00
#> SP101544     2  0.0937     0.8667 0.00 0.96 0.00 0.00 0.00 0.04
#> SP101548     4  0.1267     0.6111 0.00 0.00 0.00 0.94 0.00 0.06
#> SP101552     2  0.0547     0.8683 0.00 0.98 0.00 0.00 0.02 0.00
#> SP101558     3  0.2094     0.7372 0.02 0.00 0.90 0.00 0.00 0.08
#> SP101564     2  0.0000     0.8689 0.00 1.00 0.00 0.00 0.00 0.00
#> SP101572     2  0.3163     0.7910 0.00 0.82 0.00 0.00 0.14 0.04
#> SP101576     2  0.0000     0.8689 0.00 1.00 0.00 0.00 0.00 0.00
#> SP101580     2  0.0000     0.8689 0.00 1.00 0.00 0.00 0.00 0.00
#> SP101584     2  0.0937     0.8667 0.00 0.96 0.00 0.00 0.00 0.04
#> SP101588     2  0.5262     0.4770 0.00 0.62 0.04 0.02 0.30 0.02
#> SP101592     2  0.0547     0.8684 0.00 0.98 0.00 0.00 0.00 0.02
#> SP101596     2  0.0937     0.8667 0.00 0.96 0.00 0.00 0.00 0.04
#> SP101600     3  0.2094     0.7372 0.02 0.00 0.90 0.00 0.00 0.08
#> SP101604     4  0.5371     0.5128 0.00 0.00 0.12 0.52 0.00 0.36
#> SP101610     6  0.5882    -0.1265 0.00 0.00 0.38 0.20 0.00 0.42
#> SP101616     3  0.3797     0.3028 0.00 0.42 0.58 0.00 0.00 0.00
#> SP101622     2  0.0000     0.8689 0.00 1.00 0.00 0.00 0.00 0.00
#> SP101628     2  0.0000     0.8689 0.00 1.00 0.00 0.00 0.00 0.00
#> SP101634     3  0.5888     0.3398 0.00 0.00 0.40 0.40 0.00 0.20
#> SP101642     2  0.1814     0.8088 0.00 0.90 0.10 0.00 0.00 0.00
#> SP101648     3  0.2350     0.7531 0.00 0.00 0.88 0.02 0.00 0.10
#> SP101654     2  0.0937     0.8558 0.00 0.96 0.04 0.00 0.00 0.00
#> SP101658     6  0.5529     0.6698 0.20 0.00 0.12 0.00 0.04 0.64
#> SP101662     6  0.5324    -0.1935 0.00 0.00 0.12 0.34 0.00 0.54
#> SP101666     6  0.5876     0.2943 0.00 0.00 0.26 0.26 0.00 0.48
#> SP101670     2  0.4310     0.1809 0.00 0.54 0.00 0.00 0.44 0.02
#> SP101674     2  0.0547     0.8684 0.00 0.98 0.00 0.00 0.00 0.02
#> SP101678     2  0.0000     0.8689 0.00 1.00 0.00 0.00 0.00 0.00
#> SP101682     2  0.0937     0.8667 0.00 0.96 0.00 0.00 0.00 0.04
#> SP101686     2  0.2793     0.7303 0.00 0.80 0.00 0.00 0.20 0.00
#> SP101690     2  0.0547     0.8652 0.00 0.98 0.02 0.00 0.00 0.00
#> SP101694     2  0.3460     0.7148 0.00 0.76 0.00 0.00 0.22 0.02
#> SP101700     6  0.6200     0.1394 0.00 0.00 0.34 0.18 0.02 0.46
#> SP101708     3  0.1814     0.7433 0.00 0.00 0.90 0.00 0.00 0.10
#> SP101716     3  0.3828     0.2426 0.00 0.44 0.56 0.00 0.00 0.00
#> SP101724     2  0.0000     0.8689 0.00 1.00 0.00 0.00 0.00 0.00
#> SP101732     2  0.0000     0.8689 0.00 1.00 0.00 0.00 0.00 0.00
#> SP101740     2  0.0000     0.8689 0.00 1.00 0.00 0.00 0.00 0.00
#> SP101795     2  0.0000     0.8689 0.00 1.00 0.00 0.00 0.00 0.00
#> SP101845     2  0.0000     0.8689 0.00 1.00 0.00 0.00 0.00 0.00
#> SP101881     3  0.2474     0.7546 0.00 0.00 0.88 0.04 0.00 0.08
#> SP101891     2  0.0000     0.8689 0.00 1.00 0.00 0.00 0.00 0.00
#> SP101921     5  0.2725     0.8082 0.00 0.00 0.02 0.04 0.88 0.06
#> SP101931     2  0.0000     0.8689 0.00 1.00 0.00 0.00 0.00 0.00
#> SP102015     2  0.0000     0.8689 0.00 1.00 0.00 0.00 0.00 0.00
#> SP102035     3  0.4873     0.6040 0.00 0.00 0.60 0.32 0.00 0.08
#> SP102045     2  0.2790     0.7961 0.00 0.84 0.00 0.00 0.14 0.02
#> SP102055     3  0.5071     0.4294 0.00 0.00 0.52 0.40 0.00 0.08
#> SP102064     6  0.3660     0.4450 0.00 0.00 0.16 0.06 0.00 0.78
#> SP102074     2  0.0000     0.8689 0.00 1.00 0.00 0.00 0.00 0.00
#> SP102084     3  0.1814     0.7433 0.00 0.00 0.90 0.00 0.00 0.10
#> SP102090     3  0.3851     0.1749 0.00 0.46 0.54 0.00 0.00 0.00
#> SP102096     2  0.0000     0.8689 0.00 1.00 0.00 0.00 0.00 0.00
#> SP102103     2  0.1814     0.8266 0.00 0.90 0.00 0.00 0.10 0.00
#> SP102113     3  0.1814     0.7433 0.00 0.00 0.90 0.00 0.00 0.10
#> SP102123     2  0.0000     0.8689 0.00 1.00 0.00 0.00 0.00 0.00
#> SP102133     2  0.1814     0.8266 0.00 0.90 0.00 0.00 0.10 0.00
#> SP102143     4  0.5371    -0.0521 0.00 0.00 0.12 0.52 0.00 0.36
#> SP102161     5  0.0000     0.8358 0.00 0.00 0.00 0.00 1.00 0.00
#> SP102168     3  0.3163     0.7235 0.00 0.14 0.82 0.00 0.00 0.04
#> SP102174     2  0.0000     0.8689 0.00 1.00 0.00 0.00 0.00 0.00
#> SP102187     3  0.2094     0.7372 0.02 0.00 0.90 0.00 0.00 0.08
#> SP102485     1  0.0000     0.9277 1.00 0.00 0.00 0.00 0.00 0.00
#> SP102489     1  0.5945     0.2195 0.56 0.00 0.02 0.04 0.32 0.06
#> SP102499     6  0.4798     0.6855 0.30 0.00 0.08 0.00 0.00 0.62
#> SP102507     4  0.0937     0.6140 0.00 0.00 0.00 0.96 0.00 0.04
#> SP102511     6  0.4798     0.6855 0.30 0.00 0.08 0.00 0.00 0.62
#> SP102517     5  0.2793     0.6600 0.20 0.00 0.00 0.00 0.80 0.00
#> SP102523     5  0.5214     0.6248 0.18 0.00 0.02 0.04 0.70 0.06
#> SP102529     5  0.1267     0.8265 0.06 0.00 0.00 0.00 0.94 0.00
#> SP102537     6  0.5029     0.6958 0.26 0.00 0.12 0.00 0.00 0.62
#> SP102541     5  0.2725     0.8082 0.00 0.00 0.02 0.04 0.88 0.06
#> SP102547     1  0.6242     0.1948 0.56 0.00 0.02 0.04 0.28 0.10
#> SP102557     6  0.4798     0.6855 0.30 0.00 0.08 0.00 0.00 0.62
#> SP102561     1  0.0000     0.9277 1.00 0.00 0.00 0.00 0.00 0.00
#> SP102567     5  0.1267     0.8265 0.06 0.00 0.00 0.00 0.94 0.00
#> SP102573     5  0.5214     0.6248 0.18 0.00 0.02 0.04 0.70 0.06
#> SP102581     1  0.0000     0.9277 1.00 0.00 0.00 0.00 0.00 0.00
#> SP102591     1  0.0000     0.9277 1.00 0.00 0.00 0.00 0.00 0.00
#> SP102597     6  0.4798     0.6855 0.30 0.00 0.08 0.00 0.00 0.62
#> SP102605     1  0.0000     0.9277 1.00 0.00 0.00 0.00 0.00 0.00
#> SP102611     5  0.3198     0.6227 0.00 0.26 0.00 0.00 0.74 0.00
#> SP102617     1  0.0937     0.8876 0.96 0.00 0.00 0.00 0.00 0.04
#> SP102620     4  0.2048     0.6280 0.00 0.00 0.00 0.88 0.00 0.12
#> SP102622     5  0.1267     0.8265 0.06 0.00 0.00 0.00 0.94 0.00
#> SP102626     4  0.0937     0.6140 0.00 0.00 0.00 0.96 0.00 0.04
#> SP102630     4  0.2631     0.4262 0.00 0.00 0.18 0.82 0.00 0.00
#> SP102633     4  0.2474     0.6322 0.04 0.00 0.00 0.88 0.00 0.08
#> SP102647     4  0.0937     0.6140 0.00 0.00 0.00 0.96 0.00 0.04
#> SP102652     4  0.3942     0.5043 0.00 0.00 0.04 0.80 0.10 0.06
#> SP102690     1  0.3711     0.5573 0.72 0.00 0.00 0.02 0.00 0.26
#> SP102716     1  0.0937     0.8875 0.96 0.00 0.00 0.00 0.00 0.04
#> SP102718     1  0.0000     0.9277 1.00 0.00 0.00 0.00 0.00 0.00
#> SP102733     1  0.0000     0.9277 1.00 0.00 0.00 0.00 0.00 0.00
#> SP102741     1  0.2631     0.6932 0.82 0.00 0.00 0.00 0.00 0.18
#> SP102747     1  0.0000     0.9277 1.00 0.00 0.00 0.00 0.00 0.00
#> SP102755     1  0.0000     0.9277 1.00 0.00 0.00 0.00 0.00 0.00
#> SP102759     1  0.0000     0.9277 1.00 0.00 0.00 0.00 0.00 0.00
#>  [ reached 'max' / getOption("max.print") -- omitted 2626 rows ]

show/hide code output

cbind(get_classes(res, k = 7), get_membership(res, k = 7))
#>          class entropy silhouette   p1   p2   p3   p4   p5   p6   p7
#> SP1003       2  0.3199     0.7894 0.00 0.80 0.00 0.00 0.06 0.00 0.14
#> SP10084      2  0.2569     0.8027 0.00 0.84 0.00 0.00 0.02 0.00 0.14
#> SP1009       6  0.6264     0.2179 0.00 0.00 0.04 0.30 0.00 0.36 0.30
#> SP10150      2  0.4945     0.3786 0.00 0.52 0.00 0.00 0.36 0.00 0.12
#> SP101515     3  0.5086     0.5469 0.00 0.00 0.64 0.06 0.00 0.08 0.22
#> SP101519     7  0.5332     0.2424 0.00 0.38 0.00 0.00 0.18 0.00 0.44
#> SP101521     2  0.0504     0.8168 0.00 0.98 0.00 0.00 0.00 0.00 0.02
#> SP101523     3  0.2569     0.7303 0.02 0.00 0.84 0.00 0.00 0.14 0.00
#> SP101526     2  0.2376     0.8085 0.00 0.86 0.00 0.00 0.02 0.00 0.12
#> SP101528     4  0.4535     0.4653 0.00 0.00 0.24 0.64 0.00 0.00 0.12
#> SP101532     6  0.5840     0.3050 0.02 0.00 0.12 0.04 0.00 0.56 0.26
#> SP101536     5  0.4487     0.0556 0.00 0.42 0.00 0.00 0.52 0.00 0.06
#> SP101540     2  0.0863     0.8168 0.00 0.96 0.00 0.00 0.00 0.00 0.04
#> SP101544     2  0.2569     0.8027 0.00 0.84 0.00 0.00 0.02 0.00 0.14
#> SP101548     6  0.6413     0.2310 0.00 0.00 0.06 0.30 0.00 0.38 0.26
#> SP101552     2  0.0504     0.8136 0.00 0.98 0.00 0.00 0.00 0.00 0.02
#> SP101558     3  0.2569     0.7303 0.02 0.00 0.84 0.00 0.00 0.14 0.00
#> SP101564     2  0.0504     0.8157 0.00 0.98 0.00 0.00 0.02 0.00 0.00
#> SP101572     2  0.4478     0.6811 0.00 0.66 0.00 0.00 0.20 0.00 0.14
#> SP101576     2  0.0000     0.8157 0.00 1.00 0.00 0.00 0.00 0.00 0.00
#> SP101580     2  0.0000     0.8157 0.00 1.00 0.00 0.00 0.00 0.00 0.00
#> SP101584     2  0.2569     0.8027 0.00 0.84 0.00 0.00 0.02 0.00 0.14
#> SP101588     2  0.4264     0.4397 0.00 0.62 0.00 0.00 0.06 0.00 0.32
#> SP101592     2  0.1664     0.8151 0.00 0.92 0.00 0.00 0.02 0.00 0.06
#> SP101596     2  0.2376     0.8083 0.00 0.86 0.00 0.00 0.02 0.00 0.12
#> SP101600     3  0.2569     0.7303 0.02 0.00 0.84 0.00 0.00 0.14 0.00
#> SP101604     4  0.5681     0.2548 0.00 0.00 0.08 0.58 0.00 0.12 0.22
#> SP101610     3  0.6952     0.1398 0.00 0.00 0.34 0.26 0.00 0.24 0.16
#> SP101616     2  0.3562    -0.0912 0.00 0.50 0.50 0.00 0.00 0.00 0.00
#> SP101622     2  0.0000     0.8157 0.00 1.00 0.00 0.00 0.00 0.00 0.00
#> SP101628     2  0.0000     0.8157 0.00 1.00 0.00 0.00 0.00 0.00 0.00
#> SP101634     6  0.5604     0.1524 0.00 0.00 0.26 0.02 0.00 0.52 0.20
#> SP101642     2  0.1671     0.7714 0.00 0.90 0.10 0.00 0.00 0.00 0.00
#> SP101648     3  0.2569     0.7343 0.00 0.00 0.84 0.02 0.00 0.14 0.00
#> SP101654     2  0.0863     0.8085 0.00 0.96 0.04 0.00 0.00 0.00 0.00
#> SP101658     6  0.5363     0.3682 0.22 0.00 0.00 0.14 0.00 0.60 0.04
#> SP101662     4  0.5317     0.1405 0.00 0.00 0.02 0.56 0.00 0.28 0.14
#> SP101666     6  0.3388     0.1428 0.00 0.00 0.20 0.04 0.00 0.76 0.00
#> SP101670     2  0.4970     0.3235 0.00 0.58 0.00 0.00 0.18 0.00 0.24
#> SP101674     2  0.1664     0.8151 0.00 0.92 0.00 0.00 0.02 0.00 0.06
#> SP101678     2  0.0000     0.8157 0.00 1.00 0.00 0.00 0.00 0.00 0.00
#> SP101682     2  0.2376     0.8067 0.00 0.86 0.00 0.00 0.02 0.00 0.12
#> SP101686     2  0.2376     0.7521 0.00 0.86 0.00 0.00 0.12 0.00 0.02
#> SP101690     2  0.0504     0.8146 0.00 0.98 0.02 0.00 0.00 0.00 0.00
#> SP101694     2  0.4015     0.6395 0.00 0.68 0.00 0.00 0.26 0.00 0.06
#> SP101700     6  0.5259    -0.0152 0.00 0.00 0.22 0.00 0.00 0.52 0.26
#> SP101708     3  0.2569     0.7343 0.00 0.00 0.84 0.02 0.00 0.14 0.00
#> SP101716     3  0.3546     0.1866 0.00 0.46 0.54 0.00 0.00 0.00 0.00
#> SP101724     2  0.0000     0.8157 0.00 1.00 0.00 0.00 0.00 0.00 0.00
#> SP101732     2  0.0000     0.8157 0.00 1.00 0.00 0.00 0.00 0.00 0.00
#> SP101740     2  0.0000     0.8157 0.00 1.00 0.00 0.00 0.00 0.00 0.00
#> SP101795     2  0.0000     0.8157 0.00 1.00 0.00 0.00 0.00 0.00 0.00
#> SP101845     2  0.0000     0.8157 0.00 1.00 0.00 0.00 0.00 0.00 0.00
#> SP101881     3  0.2259     0.7354 0.00 0.00 0.84 0.00 0.00 0.16 0.00
#> SP101891     2  0.0000     0.8157 0.00 1.00 0.00 0.00 0.00 0.00 0.00
#> SP101921     7  0.3459     0.6177 0.00 0.00 0.00 0.00 0.40 0.00 0.60
#> SP101931     2  0.0000     0.8157 0.00 1.00 0.00 0.00 0.00 0.00 0.00
#> SP102015     2  0.0000     0.8157 0.00 1.00 0.00 0.00 0.00 0.00 0.00
#> SP102035     3  0.5452     0.2084 0.00 0.00 0.46 0.00 0.00 0.30 0.24
#> SP102045     2  0.4015     0.6319 0.00 0.68 0.00 0.00 0.26 0.00 0.06
#> SP102055     3  0.6215     0.2122 0.00 0.00 0.46 0.06 0.00 0.26 0.22
#> SP102064     6  0.3867     0.1982 0.00 0.00 0.02 0.38 0.00 0.60 0.00
#> SP102074     2  0.0000     0.8157 0.00 1.00 0.00 0.00 0.00 0.00 0.00
#> SP102084     3  0.2569     0.7343 0.00 0.00 0.84 0.02 0.00 0.14 0.00
#> SP102090     2  0.3562    -0.0654 0.00 0.50 0.50 0.00 0.00 0.00 0.00
#> SP102096     2  0.0000     0.8157 0.00 1.00 0.00 0.00 0.00 0.00 0.00
#> SP102103     2  0.1433     0.7939 0.00 0.92 0.00 0.00 0.08 0.00 0.00
#> SP102113     3  0.2569     0.7349 0.00 0.00 0.84 0.00 0.00 0.14 0.02
#> SP102123     2  0.0000     0.8157 0.00 1.00 0.00 0.00 0.00 0.00 0.00
#> SP102133     2  0.1886     0.7721 0.00 0.88 0.00 0.00 0.12 0.00 0.00
#> SP102143     6  0.5416     0.1632 0.00 0.00 0.20 0.00 0.00 0.42 0.38
#> SP102161     5  0.1166     0.7217 0.00 0.00 0.00 0.00 0.94 0.00 0.06
#> SP102168     3  0.3449     0.7064 0.00 0.14 0.78 0.00 0.00 0.08 0.00
#> SP102174     2  0.0504     0.8188 0.00 0.98 0.00 0.00 0.00 0.00 0.02
#> SP102187     3  0.2569     0.7303 0.02 0.00 0.84 0.00 0.00 0.14 0.00
#> SP102485     1  0.0000     0.9525 1.00 0.00 0.00 0.00 0.00 0.00 0.00
#> SP102489     7  0.4873     0.5191 0.18 0.00 0.00 0.00 0.22 0.00 0.60
#> SP102499     6  0.5055     0.3741 0.26 0.00 0.00 0.18 0.00 0.56 0.00
#> SP102507     6  0.6627     0.2253 0.02 0.00 0.04 0.32 0.00 0.36 0.26
#> SP102511     6  0.5417     0.3750 0.24 0.00 0.00 0.18 0.02 0.56 0.00
#> SP102517     5  0.1433     0.7379 0.08 0.00 0.00 0.00 0.92 0.00 0.00
#> SP102523     7  0.4127     0.6323 0.04 0.00 0.00 0.00 0.36 0.00 0.60
#> SP102529     5  0.1166     0.7678 0.06 0.00 0.00 0.00 0.94 0.00 0.00
#> SP102537     6  0.4789     0.3727 0.26 0.00 0.00 0.14 0.00 0.60 0.00
#> SP102541     7  0.3496     0.5994 0.00 0.00 0.00 0.00 0.42 0.00 0.58
#> SP102547     1  0.6020     0.1998 0.54 0.00 0.00 0.10 0.22 0.00 0.14
#> SP102557     6  0.5417     0.3750 0.24 0.00 0.00 0.18 0.02 0.56 0.00
#> SP102561     1  0.0000     0.9525 1.00 0.00 0.00 0.00 0.00 0.00 0.00
#> SP102567     5  0.1166     0.7678 0.06 0.00 0.00 0.00 0.94 0.00 0.00
#> SP102573     7  0.4127     0.6323 0.04 0.00 0.00 0.00 0.36 0.00 0.60
#> SP102581     1  0.0000     0.9525 1.00 0.00 0.00 0.00 0.00 0.00 0.00
#> SP102591     1  0.0000     0.9525 1.00 0.00 0.00 0.00 0.00 0.00 0.00
#> SP102597     6  0.5055     0.3741 0.26 0.00 0.00 0.18 0.00 0.56 0.00
#> SP102605     1  0.0000     0.9525 1.00 0.00 0.00 0.00 0.00 0.00 0.00
#> SP102611     5  0.3139     0.5043 0.00 0.30 0.00 0.00 0.70 0.00 0.00
#> SP102617     1  0.2376     0.8109 0.86 0.00 0.00 0.12 0.00 0.02 0.00
#> SP102620     4  0.5579    -0.1574 0.00 0.00 0.00 0.38 0.00 0.36 0.26
#> SP102622     5  0.1166     0.7678 0.06 0.00 0.00 0.00 0.94 0.00 0.00
#> SP102626     6  0.6237     0.2161 0.00 0.00 0.04 0.34 0.00 0.36 0.26
#> SP102630     6  0.6752     0.2480 0.00 0.00 0.20 0.14 0.00 0.40 0.26
#>  [ reached 'max' / getOption("max.print") -- omitted 2637 rows ]

show/hide code output

cbind(get_classes(res, k = 8), get_membership(res, k = 8))
#>          class entropy silhouette   p1   p2   p3   p4   p5   p6   p7   p8
#> SP1003       2   0.286     0.6377 0.00 0.84 0.00 0.06 0.08 0.02 0.00 0.00
#> SP10084      2   0.141     0.6563 0.00 0.94 0.00 0.02 0.02 0.02 0.00 0.00
#> SP1009       8   0.128     0.7354 0.00 0.00 0.00 0.02 0.00 0.00 0.04 0.94
#> SP10150      2   0.467     0.4517 0.00 0.60 0.00 0.00 0.28 0.02 0.10 0.00
#> SP101515     3   0.512     0.3216 0.00 0.00 0.56 0.04 0.00 0.06 0.02 0.32
#> SP101519     7   0.504     0.4916 0.00 0.12 0.02 0.06 0.06 0.04 0.70 0.00
#> SP101521     2   0.434     0.6867 0.00 0.70 0.00 0.16 0.00 0.04 0.10 0.00
#> SP101523     3   0.272     0.6416 0.02 0.00 0.80 0.00 0.00 0.18 0.00 0.00
#> SP101526     2   0.174     0.6765 0.00 0.92 0.00 0.04 0.02 0.02 0.00 0.00
#> SP101528     4   0.573     0.1823 0.00 0.00 0.22 0.42 0.00 0.04 0.00 0.32
#> SP101532     8   0.387     0.6160 0.00 0.00 0.06 0.02 0.00 0.20 0.00 0.72
#> SP101536     5   0.357     0.2787 0.00 0.36 0.00 0.00 0.62 0.02 0.00 0.00
#> SP101540     2   0.505     0.6890 0.00 0.66 0.02 0.14 0.00 0.06 0.12 0.00
#> SP101544     2   0.262     0.6486 0.00 0.86 0.00 0.06 0.02 0.06 0.00 0.00
#> SP101548     8   0.259     0.7157 0.00 0.00 0.04 0.02 0.00 0.08 0.00 0.86
#> SP101552     2   0.577     0.6695 0.00 0.60 0.02 0.14 0.02 0.06 0.16 0.00
#> SP101558     3   0.272     0.6416 0.02 0.00 0.80 0.00 0.00 0.18 0.00 0.00
#> SP101564     2   0.483     0.6948 0.00 0.72 0.02 0.10 0.04 0.04 0.08 0.00
#> SP101572     2   0.317     0.5809 0.00 0.78 0.00 0.02 0.18 0.02 0.00 0.00
#> SP101576     2   0.452     0.6937 0.00 0.74 0.02 0.10 0.02 0.04 0.08 0.00
#> SP101580     2   0.506     0.6876 0.00 0.68 0.02 0.14 0.02 0.04 0.10 0.00
#> SP101584     2   0.156     0.6780 0.00 0.92 0.00 0.06 0.02 0.00 0.00 0.00
#> SP101588     7   0.629    -0.0418 0.00 0.24 0.02 0.16 0.02 0.06 0.50 0.00
#> SP101592     2   0.305     0.6807 0.00 0.84 0.00 0.04 0.08 0.02 0.02 0.00
#> SP101596     2   0.128     0.6828 0.00 0.94 0.00 0.00 0.02 0.00 0.04 0.00
#> SP101600     3   0.272     0.6416 0.02 0.00 0.80 0.00 0.00 0.18 0.00 0.00
#> SP101604     8   0.550     0.2570 0.00 0.00 0.06 0.22 0.00 0.18 0.00 0.54
#> SP101610     8   0.654     0.1285 0.00 0.00 0.26 0.20 0.00 0.20 0.00 0.34
#> SP101616     3   0.659    -0.2462 0.00 0.30 0.38 0.18 0.00 0.02 0.12 0.00
#> SP101622     2   0.549     0.6749 0.00 0.64 0.02 0.14 0.02 0.06 0.12 0.00
#> SP101628     2   0.549     0.6749 0.00 0.64 0.02 0.14 0.02 0.06 0.12 0.00
#> SP101634     8   0.490     0.3674 0.00 0.00 0.28 0.00 0.00 0.20 0.00 0.52
#> SP101642     2   0.683     0.6195 0.00 0.50 0.10 0.18 0.02 0.08 0.12 0.00
#> SP101648     3   0.286     0.6627 0.00 0.00 0.82 0.02 0.00 0.14 0.00 0.02
#> SP101654     2   0.591     0.6668 0.00 0.60 0.04 0.16 0.02 0.06 0.12 0.00
#> SP101658     6   0.428     0.6578 0.18 0.00 0.00 0.00 0.00 0.70 0.08 0.04
#> SP101662     6   0.623    -0.0516 0.00 0.00 0.10 0.22 0.00 0.36 0.00 0.32
#> SP101666     6   0.461     0.2746 0.00 0.00 0.16 0.00 0.00 0.58 0.00 0.26
#> SP101670     7   0.677    -0.0816 0.00 0.24 0.02 0.16 0.06 0.06 0.46 0.00
#> SP101674     2   0.422     0.6934 0.00 0.76 0.00 0.08 0.06 0.04 0.06 0.00
#> SP101678     2   0.562     0.6697 0.00 0.62 0.02 0.16 0.02 0.06 0.12 0.00
#> SP101682     2   0.128     0.6683 0.00 0.94 0.00 0.00 0.04 0.02 0.00 0.00
#> SP101686     2   0.671     0.5733 0.00 0.48 0.02 0.16 0.06 0.06 0.22 0.00
#> SP101690     2   0.531     0.6812 0.00 0.66 0.02 0.14 0.02 0.06 0.10 0.00
#> SP101694     2   0.294     0.5139 0.00 0.70 0.00 0.00 0.30 0.00 0.00 0.00
#> SP101700     6   0.527     0.2858 0.00 0.00 0.18 0.00 0.00 0.56 0.22 0.04
#> SP101708     3   0.286     0.6627 0.00 0.00 0.82 0.02 0.00 0.14 0.00 0.02
#> SP101716     3   0.660    -0.0514 0.00 0.24 0.44 0.18 0.00 0.04 0.10 0.00
#> SP101724     2   0.562     0.6697 0.00 0.62 0.02 0.16 0.02 0.06 0.12 0.00
#> SP101732     2   0.562     0.6697 0.00 0.62 0.02 0.16 0.02 0.06 0.12 0.00
#> SP101740     2   0.562     0.6697 0.00 0.62 0.02 0.16 0.02 0.06 0.12 0.00
#> SP101795     2   0.562     0.6697 0.00 0.62 0.02 0.16 0.02 0.06 0.12 0.00
#> SP101845     2   0.562     0.6697 0.00 0.62 0.02 0.16 0.02 0.06 0.12 0.00
#> SP101881     3   0.273     0.6642 0.00 0.00 0.82 0.00 0.00 0.14 0.00 0.04
#> SP101891     2   0.562     0.6697 0.00 0.62 0.02 0.16 0.02 0.06 0.12 0.00
#> SP101921     7   0.195     0.7073 0.00 0.00 0.00 0.00 0.14 0.00 0.86 0.00
#> SP101931     2   0.332     0.7033 0.00 0.82 0.00 0.08 0.02 0.02 0.06 0.00
#> SP102015     2   0.562     0.6697 0.00 0.62 0.02 0.16 0.02 0.06 0.12 0.00
#> SP102035     8   0.451     0.2145 0.00 0.00 0.38 0.00 0.00 0.10 0.00 0.52
#> SP102045     2   0.351     0.4557 0.00 0.64 0.00 0.00 0.34 0.02 0.00 0.00
#> SP102055     8   0.507     0.0357 0.00 0.00 0.44 0.04 0.00 0.08 0.00 0.44
#> SP102064     6   0.476     0.4204 0.00 0.00 0.08 0.22 0.00 0.64 0.00 0.06
#> SP102074     2   0.562     0.6697 0.00 0.62 0.02 0.16 0.02 0.06 0.12 0.00
#> SP102084     3   0.272     0.6503 0.00 0.00 0.80 0.02 0.00 0.18 0.00 0.00
#> SP102090     3   0.735    -0.1413 0.00 0.28 0.36 0.16 0.02 0.10 0.08 0.00
#> SP102096     2   0.490     0.6880 0.00 0.70 0.02 0.12 0.02 0.04 0.10 0.00
#> SP102103     2   0.630     0.6501 0.00 0.56 0.02 0.16 0.06 0.06 0.14 0.00
#> SP102113     3   0.286     0.6636 0.00 0.00 0.82 0.00 0.00 0.14 0.02 0.02
#> SP102123     2   0.577     0.6688 0.00 0.60 0.02 0.16 0.02 0.06 0.14 0.00
#> SP102133     2   0.681     0.6178 0.00 0.50 0.02 0.16 0.14 0.06 0.12 0.00
#> SP102143     8   0.536     0.4850 0.00 0.00 0.14 0.00 0.00 0.20 0.08 0.58
#> SP102161     5   0.156     0.7327 0.00 0.00 0.00 0.00 0.90 0.00 0.10 0.00
#> SP102168     3   0.395     0.6366 0.00 0.08 0.76 0.02 0.00 0.12 0.02 0.00
#> SP102174     2   0.452     0.6998 0.00 0.74 0.02 0.10 0.02 0.04 0.08 0.00
#> SP102187     3   0.272     0.6416 0.02 0.00 0.80 0.00 0.00 0.18 0.00 0.00
#> SP102485     1   0.000     0.9360 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#> SP102489     7   0.241     0.6812 0.08 0.00 0.00 0.00 0.06 0.00 0.86 0.00
#> SP102499     6   0.470     0.6828 0.26 0.00 0.00 0.08 0.00 0.62 0.00 0.04
#> SP102507     8   0.134     0.7210 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.92
#> SP102511     6   0.524     0.6899 0.22 0.00 0.00 0.08 0.04 0.62 0.00 0.04
#> SP102517     5   0.156     0.7710 0.06 0.00 0.00 0.00 0.92 0.00 0.02 0.00
#> SP102523     7   0.195     0.7159 0.00 0.00 0.00 0.00 0.14 0.00 0.86 0.00
#> SP102529     5   0.156     0.7710 0.06 0.00 0.00 0.00 0.92 0.00 0.02 0.00
#> SP102537     6   0.376     0.6903 0.26 0.00 0.00 0.06 0.00 0.68 0.00 0.00
#> SP102541     7   0.211     0.7054 0.00 0.00 0.00 0.00 0.16 0.00 0.84 0.00
#> SP102547     1   0.575    -0.1648 0.42 0.00 0.00 0.06 0.06 0.04 0.42 0.00
#> SP102557     6   0.524     0.6899 0.22 0.00 0.00 0.08 0.04 0.62 0.00 0.04
#> SP102561     1   0.000     0.9360 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#> SP102567     5   0.156     0.7710 0.06 0.00 0.00 0.00 0.92 0.00 0.02 0.00
#> SP102573     7   0.195     0.7159 0.00 0.00 0.00 0.00 0.14 0.00 0.86 0.00
#>  [ reached 'max' / getOption("max.print") -- omitted 2647 rows ]

show/hide code output

cbind(get_classes(res, k = 9), get_membership(res, k = 9))
#>          class entropy silhouette   p1   p2   p3   p4   p5   p6   p7   p8   p9
#> SP1003       2  0.1473     0.6274 0.00 0.92 0.00 0.00 0.02 0.00 0.00 0.00 0.06
#> SP10084      2  0.0446     0.6327 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.02
#> SP1009       8  0.1786     0.7280 0.00 0.00 0.00 0.06 0.00 0.00 0.04 0.90 0.00
#> SP10150      2  0.3758     0.5095 0.00 0.68 0.00 0.00 0.22 0.00 0.10 0.00 0.00
#> SP101515     3  0.5397     0.3803 0.00 0.00 0.58 0.06 0.00 0.08 0.02 0.24 0.02
#> SP101519     7  0.4758     0.4469 0.00 0.06 0.00 0.00 0.06 0.00 0.52 0.00 0.36
#> SP101521     9  0.3063     0.4113 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.60
#> SP101523     3  0.2431     0.6011 0.02 0.00 0.82 0.00 0.00 0.16 0.00 0.00 0.00
#> SP101526     2  0.1916     0.5898 0.00 0.88 0.00 0.00 0.02 0.00 0.00 0.00 0.10
#> SP101528     8  0.6764    -0.0534 0.00 0.00 0.14 0.34 0.00 0.10 0.06 0.34 0.02
#> SP101532     8  0.3637     0.5788 0.00 0.00 0.02 0.04 0.00 0.24 0.00 0.70 0.00
#> SP101536     5  0.4110     0.3805 0.00 0.18 0.00 0.00 0.64 0.00 0.00 0.00 0.18
#> SP101540     2  0.3140    -0.1669 0.00 0.54 0.00 0.00 0.00 0.00 0.00 0.00 0.46
#> SP101544     2  0.1670     0.5989 0.00 0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.12
#> SP101548     8  0.4619     0.6349 0.00 0.00 0.02 0.10 0.00 0.14 0.06 0.68 0.00
#> SP101552     9  0.3424     0.4897 0.00 0.38 0.00 0.00 0.02 0.00 0.00 0.00 0.60
#> SP101558     3  0.2275     0.6086 0.02 0.00 0.84 0.00 0.00 0.14 0.00 0.00 0.00
#> SP101564     2  0.3997    -0.2230 0.00 0.48 0.00 0.00 0.06 0.00 0.00 0.00 0.46
#> SP101572     2  0.1843     0.6131 0.00 0.86 0.00 0.00 0.14 0.00 0.00 0.00 0.00
#> SP101576     2  0.3990    -0.1727 0.00 0.50 0.00 0.00 0.06 0.00 0.00 0.00 0.44
#> SP101580     9  0.3778     0.3858 0.00 0.44 0.00 0.00 0.04 0.00 0.00 0.00 0.52
#> SP101584     2  0.2001     0.5823 0.00 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.16
#> SP101588     9  0.2703     0.5220 0.00 0.02 0.00 0.00 0.00 0.00 0.20 0.00 0.78
#> SP101592     2  0.3122     0.4944 0.00 0.76 0.00 0.00 0.06 0.00 0.00 0.00 0.18
#> SP101596     2  0.2224     0.5888 0.00 0.86 0.00 0.00 0.04 0.00 0.00 0.00 0.10
#> SP101600     3  0.2275     0.6086 0.02 0.00 0.84 0.00 0.00 0.14 0.00 0.00 0.00
#> SP101604     8  0.6727     0.2359 0.00 0.00 0.14 0.22 0.00 0.22 0.06 0.36 0.00
#> SP101610     8  0.6833     0.2086 0.00 0.00 0.20 0.20 0.00 0.20 0.06 0.34 0.00
#> SP101616     9  0.3572     0.5514 0.00 0.08 0.22 0.00 0.00 0.00 0.00 0.00 0.70
#> SP101622     9  0.3478     0.5909 0.00 0.30 0.00 0.00 0.04 0.00 0.00 0.00 0.66
#> SP101628     9  0.3604     0.5521 0.00 0.34 0.00 0.00 0.04 0.00 0.00 0.00 0.62
#> SP101634     8  0.4858     0.0656 0.00 0.00 0.38 0.00 0.00 0.22 0.00 0.40 0.00
#> SP101642     9  0.3408     0.6463 0.00 0.16 0.06 0.00 0.02 0.00 0.00 0.00 0.76
#> SP101648     3  0.2537     0.6221 0.00 0.00 0.84 0.02 0.00 0.12 0.00 0.02 0.00
#> SP101654     9  0.3637     0.6301 0.00 0.24 0.02 0.00 0.04 0.00 0.00 0.00 0.70
#> SP101658     6  0.4105     0.5686 0.12 0.00 0.00 0.02 0.00 0.72 0.12 0.02 0.00
#> SP101662     8  0.6791     0.1861 0.00 0.00 0.14 0.22 0.00 0.26 0.06 0.32 0.00
#> SP101666     6  0.4635     0.1610 0.00 0.00 0.20 0.00 0.00 0.52 0.00 0.28 0.00
#> SP101670     9  0.3347     0.4584 0.00 0.02 0.00 0.00 0.02 0.00 0.24 0.00 0.72
#> SP101674     2  0.3919     0.0190 0.00 0.56 0.00 0.00 0.06 0.00 0.00 0.00 0.38
#> SP101678     9  0.3402     0.6073 0.00 0.28 0.00 0.00 0.04 0.00 0.00 0.00 0.68
#> SP101682     2  0.1473     0.6155 0.00 0.92 0.00 0.00 0.02 0.00 0.00 0.00 0.06
#> SP101686     9  0.3014     0.6037 0.00 0.04 0.00 0.00 0.08 0.00 0.06 0.00 0.82
#> SP101690     9  0.3789     0.3468 0.00 0.46 0.00 0.00 0.04 0.00 0.00 0.00 0.50
#> SP101694     2  0.3572     0.5221 0.00 0.70 0.00 0.00 0.22 0.00 0.00 0.00 0.08
#> SP101700     6  0.5772     0.1910 0.00 0.00 0.20 0.00 0.00 0.52 0.18 0.04 0.06
#> SP101708     3  0.2537     0.6221 0.00 0.00 0.84 0.02 0.00 0.12 0.00 0.02 0.00
#> SP101716     9  0.3712     0.4905 0.00 0.06 0.30 0.00 0.00 0.00 0.00 0.00 0.64
#> SP101724     9  0.3402     0.6073 0.00 0.28 0.00 0.00 0.04 0.00 0.00 0.00 0.68
#> SP101732     9  0.3316     0.6214 0.00 0.26 0.00 0.00 0.04 0.00 0.00 0.00 0.70
#> SP101740     9  0.2821     0.6412 0.00 0.22 0.00 0.00 0.02 0.00 0.00 0.00 0.76
#> SP101795     9  0.3221     0.6314 0.00 0.24 0.00 0.00 0.04 0.00 0.00 0.00 0.72
#> SP101845     9  0.3116     0.6390 0.00 0.22 0.00 0.00 0.04 0.00 0.00 0.00 0.74
#> SP101881     3  0.2537     0.6221 0.00 0.00 0.84 0.02 0.00 0.12 0.00 0.02 0.00
#> SP101891     9  0.3221     0.6314 0.00 0.24 0.00 0.00 0.04 0.00 0.00 0.00 0.72
#> SP101921     7  0.2890     0.7818 0.00 0.00 0.00 0.00 0.08 0.00 0.80 0.00 0.12
#> SP101931     2  0.3193     0.2610 0.00 0.68 0.00 0.00 0.02 0.00 0.00 0.00 0.30
#> SP102015     9  0.3316     0.6214 0.00 0.26 0.00 0.00 0.04 0.00 0.00 0.00 0.70
#> SP102035     8  0.4886     0.1667 0.00 0.00 0.36 0.02 0.00 0.14 0.00 0.48 0.00
#> SP102045     2  0.3478     0.4840 0.00 0.66 0.00 0.00 0.30 0.00 0.00 0.00 0.04
#> SP102055     3  0.5023     0.2365 0.00 0.00 0.52 0.06 0.00 0.10 0.00 0.32 0.00
#> SP102064     6  0.5620     0.1325 0.00 0.00 0.24 0.22 0.00 0.46 0.00 0.08 0.00
#> SP102074     9  0.3221     0.6314 0.00 0.24 0.00 0.00 0.04 0.00 0.00 0.00 0.72
#> SP102084     3  0.2001     0.6152 0.00 0.00 0.84 0.00 0.00 0.16 0.00 0.00 0.00
#> SP102090     9  0.5156     0.4469 0.00 0.10 0.18 0.00 0.00 0.06 0.00 0.04 0.62
#> SP102096     9  0.3997     0.2885 0.00 0.46 0.00 0.00 0.06 0.00 0.00 0.00 0.48
#> SP102103     9  0.3985     0.6335 0.00 0.22 0.00 0.00 0.08 0.00 0.02 0.00 0.68
#> SP102113     3  0.2537     0.6221 0.00 0.00 0.84 0.02 0.00 0.12 0.00 0.02 0.00
#> SP102123     9  0.2431     0.6499 0.00 0.16 0.00 0.00 0.02 0.00 0.00 0.00 0.82
#> SP102133     9  0.4099     0.5986 0.00 0.20 0.00 0.00 0.16 0.00 0.00 0.00 0.64
#> SP102143     8  0.5060     0.5183 0.00 0.00 0.14 0.00 0.00 0.16 0.06 0.62 0.02
#> SP102161     5  0.1670     0.7387 0.00 0.00 0.00 0.00 0.88 0.00 0.12 0.00 0.00
#> SP102168     3  0.3221     0.5201 0.00 0.00 0.72 0.00 0.00 0.04 0.00 0.00 0.24
#> SP102174     2  0.3545     0.1931 0.00 0.64 0.00 0.00 0.04 0.00 0.00 0.00 0.32
#> SP102187     3  0.2275     0.6086 0.02 0.00 0.84 0.00 0.00 0.14 0.00 0.00 0.00
#> SP102485     1  0.0000     0.9107 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#> SP102489     7  0.1707     0.7421 0.08 0.00 0.00 0.02 0.00 0.00 0.90 0.00 0.00
#> SP102499     6  0.4477     0.6230 0.26 0.00 0.00 0.18 0.00 0.56 0.00 0.00 0.00
#> SP102507     8  0.2929     0.6612 0.00 0.00 0.00 0.24 0.00 0.02 0.00 0.74 0.00
#> SP102511     6  0.4985     0.6321 0.22 0.00 0.00 0.18 0.04 0.56 0.00 0.00 0.00
#> SP102517     5  0.1033     0.7890 0.06 0.00 0.00 0.00 0.94 0.00 0.00 0.00 0.00
#> SP102523     7  0.1269     0.7869 0.00 0.00 0.00 0.00 0.08 0.00 0.92 0.00 0.00
#> SP102529     5  0.1033     0.7890 0.06 0.00 0.00 0.00 0.94 0.00 0.00 0.00 0.00
#>  [ reached 'max' / getOption("max.print") -- omitted 2654 rows ]

show/hide code output

cbind(get_classes(res, k = 10), get_membership(res, k = 10))
#>          class entropy silhouette   p1   p2   p3   p4   p5   p6   p7   p8   p9  p10
#> SP1003       2  0.2121    0.63721 0.00 0.88 0.00 0.00 0.02 0.00 0.00 0.00 0.06 0.04
#> SP10084      2  0.0729    0.65688 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00
#> SP1009       8  0.0426    0.64740 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.98 0.00 0.00
#> SP10150      2  0.5540    0.45244 0.00 0.54 0.00 0.00 0.18 0.00 0.10 0.00 0.14 0.04
#> SP101515     3  0.4791    0.29702 0.00 0.00 0.50 0.28 0.00 0.00 0.02 0.20 0.00 0.00
#> SP101519     7  0.4814    0.53397 0.00 0.04 0.00 0.00 0.04 0.00 0.60 0.00 0.24 0.08
#> SP101521     9  0.3319    0.44752 0.00 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.04
#> SP101523     3  0.0986    0.69031 0.00 0.00 0.94 0.00 0.00 0.06 0.00 0.00 0.00 0.00
#> SP101526     2  0.2047    0.59509 0.00 0.82 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00
#> SP101528     8  0.5620    0.31684 0.00 0.00 0.10 0.34 0.00 0.00 0.02 0.42 0.00 0.12
#> SP101532     8  0.6574    0.31277 0.00 0.02 0.10 0.12 0.02 0.24 0.00 0.44 0.00 0.06
#> SP101536     5  0.4702    0.22964 0.00 0.16 0.00 0.00 0.50 0.00 0.00 0.00 0.32 0.02
#> SP101540     2  0.3958    0.15896 0.00 0.52 0.00 0.00 0.02 0.00 0.00 0.00 0.42 0.04
#> SP101544     2  0.1759    0.62384 0.00 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00
#> SP101548     8  0.4511    0.50185 0.00 0.00 0.06 0.28 0.00 0.04 0.02 0.60 0.00 0.00
#> SP101552     9  0.3638    0.40610 0.00 0.28 0.00 0.00 0.02 0.00 0.00 0.00 0.66 0.04
#> SP101558     3  0.1152    0.69336 0.02 0.00 0.94 0.00 0.00 0.04 0.00 0.00 0.00 0.00
#> SP101564     9  0.2972    0.43752 0.00 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.02
#> SP101572     2  0.2535    0.64271 0.00 0.84 0.00 0.00 0.10 0.00 0.00 0.00 0.02 0.04
#> SP101576     9  0.3114    0.36614 0.00 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.02
#> SP101580     9  0.2575    0.48690 0.00 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.72 0.00
#> SP101584     2  0.3155    0.58994 0.00 0.78 0.00 0.00 0.00 0.00 0.04 0.00 0.14 0.04
#> SP101588     9  0.4314    0.07887 0.00 0.02 0.00 0.00 0.00 0.00 0.40 0.00 0.50 0.08
#> SP101592     2  0.3488    0.37063 0.00 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.04
#> SP101596     2  0.3265    0.56534 0.00 0.74 0.00 0.00 0.02 0.00 0.00 0.00 0.20 0.04
#> SP101600     3  0.1152    0.69336 0.02 0.00 0.94 0.00 0.00 0.04 0.00 0.00 0.00 0.00
#> SP101604     8  0.5361    0.33749 0.00 0.00 0.16 0.38 0.00 0.04 0.02 0.40 0.00 0.00
#> SP101610     4  0.6744   -0.28403 0.00 0.02 0.26 0.36 0.02 0.04 0.02 0.24 0.00 0.04
#> SP101616     9  0.3165    0.53338 0.00 0.00 0.26 0.00 0.00 0.00 0.00 0.00 0.70 0.04
#> SP101622     9  0.2579    0.54974 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.78 0.02
#> SP101628     9  0.2692    0.53393 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.76 0.02
#> SP101634     8  0.6880   -0.03969 0.00 0.02 0.32 0.12 0.02 0.14 0.00 0.32 0.00 0.06
#> SP101642     9  0.2340    0.62999 0.00 0.02 0.08 0.00 0.00 0.00 0.00 0.00 0.86 0.04
#> SP101648     3  0.0729    0.69462 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.04 0.00 0.00
#> SP101654     9  0.2122    0.62869 0.00 0.10 0.04 0.00 0.00 0.00 0.00 0.00 0.86 0.00
#> SP101658     6  0.4980    0.52530 0.06 0.00 0.08 0.12 0.00 0.66 0.06 0.00 0.00 0.02
#> SP101662     8  0.5429    0.32614 0.00 0.00 0.18 0.36 0.00 0.04 0.02 0.40 0.00 0.00
#> SP101666     8  0.6927   -0.02398 0.00 0.02 0.28 0.12 0.02 0.24 0.00 0.28 0.00 0.04
#> SP101670     9  0.4679    0.04941 0.00 0.02 0.00 0.00 0.02 0.00 0.40 0.00 0.48 0.08
#> SP101674     9  0.3973    0.00642 0.00 0.44 0.00 0.00 0.02 0.00 0.00 0.00 0.50 0.04
#> SP101678     9  0.1594    0.61978 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.00
#> SP101682     2  0.1412    0.64486 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00
#> SP101686     9  0.2870    0.57867 0.00 0.04 0.00 0.00 0.02 0.00 0.14 0.00 0.80 0.00
#> SP101690     9  0.3224    0.29819 0.00 0.36 0.00 0.00 0.02 0.00 0.00 0.00 0.62 0.00
#> SP101694     2  0.4748    0.38952 0.00 0.54 0.00 0.00 0.14 0.00 0.00 0.00 0.28 0.04
#> SP101700     6  0.7661   -0.03569 0.00 0.02 0.26 0.12 0.02 0.26 0.20 0.08 0.00 0.04
#> SP101708     3  0.0729    0.69462 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.04 0.00 0.00
#> SP101716     9  0.3559    0.51774 0.00 0.00 0.26 0.00 0.00 0.00 0.02 0.00 0.68 0.04
#> SP101724     9  0.1594    0.61978 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.00
#> SP101732     9  0.1594    0.61978 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.00
#> SP101740     9  0.1211    0.63484 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00
#> SP101795     9  0.1211    0.63484 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00
#> SP101845     9  0.1412    0.62986 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00
#> SP101881     3  0.0729    0.69462 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.04 0.00 0.00
#> SP101891     9  0.1412    0.62730 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00
#> SP101921     7  0.3867    0.66549 0.00 0.02 0.00 0.00 0.10 0.00 0.74 0.00 0.10 0.04
#> SP101931     2  0.2954    0.18467 0.00 0.58 0.00 0.00 0.00 0.00 0.00 0.00 0.42 0.00
#> SP102015     9  0.1412    0.62986 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00
#> SP102035     8  0.6437   -0.06147 0.00 0.02 0.36 0.12 0.02 0.04 0.02 0.38 0.00 0.04
#> SP102045     2  0.4921    0.40576 0.00 0.52 0.00 0.00 0.24 0.00 0.00 0.00 0.20 0.04
#> SP102055     3  0.4820    0.27557 0.00 0.00 0.50 0.24 0.00 0.02 0.00 0.24 0.00 0.00
#> SP102064     3  0.5240    0.31088 0.00 0.00 0.46 0.32 0.00 0.12 0.00 0.10 0.00 0.00
#> SP102074     9  0.1412    0.62986 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00
#> SP102084     3  0.0850    0.69670 0.00 0.00 0.96 0.02 0.00 0.02 0.00 0.00 0.00 0.00
#> SP102090     9  0.4297    0.44010 0.00 0.02 0.12 0.00 0.00 0.00 0.00 0.00 0.60 0.26
#> SP102096     9  0.3649    0.21965 0.00 0.38 0.00 0.00 0.02 0.00 0.00 0.00 0.58 0.02
#> SP102103     9  0.2586    0.62732 0.00 0.08 0.00 0.00 0.06 0.00 0.02 0.00 0.84 0.00
#> SP102113     3  0.0729    0.69462 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.04 0.00 0.00
#> SP102123     9  0.1955    0.62041 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.06
#> SP102133     9  0.2947    0.59075 0.00 0.10 0.00 0.00 0.12 0.00 0.00 0.00 0.78 0.00
#> SP102143     8  0.6627    0.35145 0.00 0.02 0.14 0.12 0.02 0.06 0.08 0.52 0.00 0.04
#> SP102161     5  0.0986    0.76860 0.00 0.00 0.00 0.00 0.94 0.00 0.06 0.00 0.00 0.00
#> SP102168     3  0.2489    0.50045 0.00 0.00 0.74 0.00 0.00 0.00 0.00 0.00 0.26 0.00
#> SP102174     9  0.2996    0.07534 0.00 0.46 0.00 0.00 0.00 0.00 0.00 0.00 0.54 0.00
#> SP102187     3  0.1152    0.69336 0.02 0.00 0.94 0.00 0.00 0.04 0.00 0.00 0.00 0.00
#> SP102485     1  0.0000    0.88326 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#>  [ reached 'max' / getOption("max.print") -- omitted 2661 rows ]

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

consensus_heatmap(res, k = 7)

plot of chunk tab-ATC-skmeans-consensus-heatmap-6

consensus_heatmap(res, k = 8)

plot of chunk tab-ATC-skmeans-consensus-heatmap-7

consensus_heatmap(res, k = 9)

plot of chunk tab-ATC-skmeans-consensus-heatmap-8

consensus_heatmap(res, k = 10)

plot of chunk tab-ATC-skmeans-consensus-heatmap-9

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

membership_heatmap(res, k = 7)

plot of chunk tab-ATC-skmeans-membership-heatmap-6

membership_heatmap(res, k = 8)

plot of chunk tab-ATC-skmeans-membership-heatmap-7

membership_heatmap(res, k = 9)

plot of chunk tab-ATC-skmeans-membership-heatmap-8

membership_heatmap(res, k = 10)

plot of chunk tab-ATC-skmeans-membership-heatmap-9

As soon as the classes for columns are determined, the signatures that are significantly different between subgroups can be looked for. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

get_signatures(res, k = 7)

plot of chunk tab-ATC-skmeans-get-signatures-6

get_signatures(res, k = 8)

plot of chunk tab-ATC-skmeans-get-signatures-7

get_signatures(res, k = 9)

plot of chunk tab-ATC-skmeans-get-signatures-8

get_signatures(res, k = 10)

plot of chunk tab-ATC-skmeans-get-signatures-9

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

get_signatures(res, k = 7, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-6

get_signatures(res, k = 8, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-7

get_signatures(res, k = 9, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-8

get_signatures(res, k = 10, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-9

Compare the overlap of signatures from different k:

compare_signatures(res)
#> Error in fit_diagram(combinations, "euler", input, shape, control, ...): !any(duplicated(names(combinations))) is not TRUE

get_signature() returns a data frame invisibly. To get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows (which is done by automatically selecting number of clusters).

If there are too many signatures, top_signatures = ... can be set to only show the signatures with the highest FDRs:

# code only for demonstration
# e.g. to show the top 500 most significant rows
tb = get_signature(res, k = ..., top_signatures = 500)

t-SNE plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "t-SNE")
#> Error in Rtsne.default(X = structure(c(-3.3804321739366, -4.96756462224444, : Remove duplicates before running TSNE.
dimension_reduction(res, k = 3, method = "t-SNE")
#> Error in Rtsne.default(X = structure(c(-3.3804321739366, -4.96756462224444, : Remove duplicates before running TSNE.
dimension_reduction(res, k = 4, method = "t-SNE")
#> Error in Rtsne.default(X = structure(c(-3.3804321739366, -4.96756462224444, : Remove duplicates before running TSNE.
dimension_reduction(res, k = 5, method = "t-SNE")
#> Error in Rtsne.default(X = structure(c(-3.3804321739366, -4.96756462224444, : Remove duplicates before running TSNE.
dimension_reduction(res, k = 6, method = "t-SNE")
#> Error in Rtsne.default(X = structure(c(-3.3804321739366, -4.96756462224444, : Remove duplicates before running TSNE.
dimension_reduction(res, k = 7, method = "t-SNE")
#> Error in Rtsne.default(X = structure(c(-3.3804321739366, -4.96756462224444, : Remove duplicates before running TSNE.
dimension_reduction(res, k = 8, method = "t-SNE")
#> Error in Rtsne.default(X = structure(c(-3.3804321739366, -4.96756462224444, : Remove duplicates before running TSNE.
dimension_reduction(res, k = 9, method = "t-SNE")
#> Error in Rtsne.default(X = structure(c(-3.3804321739366, -4.96756462224444, : Remove duplicates before running TSNE.
dimension_reduction(res, k = 10, method = "t-SNE")
#> Error in Rtsne.default(X = structure(c(-3.3804321739366, -4.96756462224444, : Remove duplicates before running TSNE.

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 4.0.2 (2020-06-22)
#> Platform: x86_64-apple-darwin17.0 (64-bit)
#> Running under: macOS High Sierra 10.13.6
#> 
#> Matrix products: default
#> BLAS:   /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
#> LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
#> 
#> locale:
#> [1] zh_CN.UTF-8/zh_CN.UTF-8/zh_CN.UTF-8/C/zh_CN.UTF-8/zh_CN.UTF-8
#> 
#> attached base packages:
#> [1] grid      parallel  stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#>  [1] genefilter_1.70.0         ComplexHeatmap_2.7.2.1000 markdown_1.1             
#>  [4] knitr_1.30                forcats_0.5.0             stringr_1.4.0            
#>  [7] dplyr_1.0.2               purrr_0.3.4               readr_1.4.0              
#> [10] tidyr_1.1.2               tibble_3.0.4              ggplot2_3.3.3            
#> [13] tidyverse_1.3.0           cola_1.9.0.1013           synchronicity_1.3.5      
#> [16] bigmemory_4.5.36          Biobase_2.48.0            BiocGenerics_0.34.0      
#> [19] roxytest_0.0.1            pacman_0.5.1             
#> 
#> loaded via a namespace (and not attached):
#>   [1] readxl_1.3.1         uuid_0.1-4           backports_1.2.1      circlize_0.4.11     
#>   [5] NMF_0.23.0           plyr_1.8.6           polylabelr_0.2.0     splines_4.0.2       
#>   [9] listenv_0.8.0        usethis_2.0.0        gridBase_0.4-7       digest_0.6.27       
#>  [13] foreach_1.5.1        htmltools_0.5.0      magick_2.5.2         fansi_0.4.1         
#>  [17] magrittr_2.0.1       memoise_1.1.0        cluster_2.1.0        doParallel_1.0.16   
#>  [21] openxlsx_4.2.3       remotes_2.2.0        annotate_1.66.0      globals_0.14.0      
#>  [25] modelr_0.1.8         matrixStats_0.57.0   languageserver_0.3.9 prettyunits_1.1.1   
#>  [29] colorspace_2.0-0     blob_1.2.1           rvest_0.3.6          ggrepel_0.9.0       
#>  [33] haven_2.3.1          xfun_0.19            RCurl_1.98-1.2       jsonlite_1.7.2      
#>  [37] callr_3.5.1          crayon_1.3.4         microbenchmark_1.4-7 bigmemory.sri_0.1.3 
#>  [41] roxygen2_7.1.1       impute_1.62.0        survival_3.2-7       brew_1.0-6          
#>  [45] iterators_1.0.13     glue_1.4.2           polyclip_1.10-0      registry_0.5-1      
#>  [49] gtable_0.3.0         GetoptLong_1.0.5     car_3.0-10           pkgbuild_1.2.0      
#>  [53] shape_1.4.5          abind_1.4-5          scales_1.1.1         DBI_1.1.0           
#>  [57] rngtools_1.5         rstatix_0.6.0        Rcpp_1.0.5           xtable_1.8-4        
#>  [61] clue_0.3-58          bit_4.0.4            foreign_0.8-81       mclust_5.4.7        
#>  [65] stats4_4.0.2         DT_0.17              htmlwidgets_1.5.3    httr_1.4.2          
#>  [69] RColorBrewer_1.1-2   ellipsis_0.3.1       factoextra_1.0.7     XML_3.99-0.5        
#>  [73] pkgconfig_2.0.3      dbplyr_2.0.0         AnnotationDbi_1.50.3 tidyselect_1.1.0    
#>  [77] rlang_0.4.10         reshape2_1.4.4       munsell_0.5.0        cellranger_1.1.0    
#>  [81] tools_4.0.2          cli_2.2.0            RSQLite_2.2.1        generics_0.1.0      
#>  [85] devtools_2.3.2       broom_0.7.3          evaluate_0.14        yaml_2.2.1          
#>  [89] bit64_4.0.5          processx_3.4.5       fs_1.5.0             zip_2.1.1           
#>  [93] future_1.21.0        slam_0.1-48          xml2_1.3.2           compiler_4.0.2      
#>  [97] rstudioapi_0.13      curl_4.3             png_0.1-7            testthat_3.0.1      
#> [101] ggsignif_0.6.0       reprex_0.3.0         stringi_1.5.3        highr_0.8           
#> [105] ps_1.5.0             desc_1.2.0           lattice_0.20-41      Matrix_1.3-2        
#> [109] vctrs_0.3.6          pillar_1.4.7         lifecycle_0.2.0      furrr_0.2.1         
#> [113] BiocManager_1.30.10  eulerr_6.1.0         GlobalOptions_0.1.2  bitops_1.0-6        
#> [117] data.table_1.13.6    R6_2.5.0             rio_0.5.16           IRanges_2.22.2      
#> [121] parallelly_1.23.0    sessioninfo_1.1.1    codetools_0.2-18     assertthat_0.2.1    
#> [125] pkgload_1.1.0        pkgmaker_0.32.2      rprojroot_2.0.2      rjson_0.2.20        
#> [129] withr_2.3.0          S4Vectors_0.26.1     hms_0.5.3            rmarkdown_2.6       
#> [133] rvcheck_0.1.8        carData_3.0-4        sigminer_1.2.0.99    Rtsne_0.15          
#> [137] skmeans_0.2-13       Cairo_1.5-12.2       ggpubr_0.4.0         lubridate_1.7.9.2